\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+6\right)\left(x+4\right)\left(x+2\right)\left(x+8\right)+16\)

\(=\left(x^2+10x+24\right)\left(x^2+10x+16\right)+16\)

\(=\left(t+8\right)t+16=\left(t+4\right)^2=\left(x^2+10x+20\right)^2\)

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
 

24 tháng 9 2019

\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)

\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)

\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1) 

Đặt \(x^2-10x+20=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+16\)

\(=t^2-16+16\)

\(=t^2\)Thay \(t=x^2-10x+20\)ta được :

\(\left(x^2-10x+20\right)^2\)

\(=\left(x^2-2.5.x+25-25+20\right)^2\)

\(=\left[\left(x-5\right)^2-5\right]^2\)

\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)

7 tháng 10 2018

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+18\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)-16\)

\(=\left(x^2+10x+20\right)^2-16+16=\left(x^2+10x+20\right)^2\)

Chúc bạn học tốt.

23 tháng 10 2019

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)


\(\Rightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+6\right)\left(x+8\right)\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left[\left(x^2+10x+16\right)+8\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+4^2\)

\(\Rightarrow\left(x^2+10x+20\right)^2\)

3 tháng 9 2018

Đặt: \(x^2-6x+1=a;x^2+1=b\)

Khi đó đa thức này có dạng:

\(2a^2+5ab+2b^2=2a^2+4ab+ab+2b^2\)

\(=2a\left(a+2b\right)+b\left(a+2b\right)=\left(a+2b\right)\left(2a+b\right)\)

Thay lại a và b thì được:

\(\left(a+2b\right)\left(2a+b\right)=\left(x^2-6x+1+2x^2+2\right)\left(2x^2-12x+2+x^2+1\right)\)

\(=\left(3x^2-6x+3\right)\left(3x^2-12x+3\right)\)

\(=9\left(x-1\right)^2\left(x^2-4x+1\right)\)

Vậy ...

6 tháng 1 2018

Ta có (6x+5)2(3x+2)(x+1)-35

= (36x2+60x+25)(3x2+5x+2)-35 (1)

Đặt a=3x2+5x+2

=> 12a+1= 12(3x2+5x+2)+1 =36x2+60x+25

Thay a=3x2+5x+2 vào (1) ta được

(12a+1).a-35=12a2+a-35

= 12a2-20a+21a-35

= 4a(3a-5)+7(3a-5)

= (3a-5)(4a+7) (2)

Thay 3x2+5x+2=a vào (2) ta được

(9x2+15x+6-5)(12x2+20x+8+7)

= (9x2+15x+1)(12x2+20x+15)

Ta có: \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-35\)

\(=\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)-35\)(1)

Đặt \(3x^2+5x+2=y\)

\(\left(1\right)=\left(12y+1\right)y-35\)

\(=12y^2+y-35\)

\(=\left(3y-5\right)\left(4y+7\right)\)

\(=\left(9x^2+15x+1\right)\left(12x^2+20x+15\right)\)

28 tháng 9 2017

a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)

\(=x^4-2x^3+6x^2-8x+8=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)

b)\(x^4+6x^3+7x^2-6x+1=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2.x^2.3x\)+2.3x.(-1)+2.x2.(-1)

\(=\left(x^2+3x-1\right)^2\)