K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2022

Kiểm tra lại \(x^2-2y+y^2...\) hay \(x^2-2xy+y^2...\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
17 tháng 8 2020

x4 + 2021x2 - 2020x + 2021

= (x4 + x) + 2021(x2 - x + 1)

= x(x3 + 1) + 2021(x2 - x + 1)

= x(x + 1)(x2 - x + 1) + 2021(x2 - x + 1)

= (x2 + x + 2021)(x2 - x + 1)

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

28 tháng 3 2021

Đặt \(A=x^4-2y^4-x^2y^2+x^2+y^2\)

\(\Rightarrow2A=2x^4-4y^4-2x^2y^2+2x^2+2y^2\)

\(\Rightarrow2A=\left(x^4+2x^2+1\right)-\left(y^4-2y^2+1\right)\)\(+\left(x^4-2x^2y^2+y^4\right)-4y^4\)

\(\Rightarrow2A=\left(x^2+1\right)^2-\left(y^2-1\right)^2+\left(x^2-y^2\right)^2-4y^4\)

\(\Rightarrow2A=\left[\left(x^2+1\right)^2-4y^4\right]+\left[\left(x^2-y^2\right)^2-\left(y^2-1\right)^2\right]\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-y^2+y^2-1\right)\left(x^2-y^2-y^2+1\right)\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2\right)+\)\(\left(x^2-1\right)\left(x^2+1-2y^2\right)\)

\(\Rightarrow2A=\left(x^2+1-2y^2\right)\left(x^2+1+2y^2+x^2-1\right)\)

\(\Rightarrow2A=\left(x^2-2y^2+1\right)\left(2x^2+2y^2\right)\)

\(\Rightarrow2A=2\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\)

\(\Rightarrow A=\left(x^2-y^2+1\right)\left(x^2+y^2\right)\)

28 tháng 3 2021

Nhầm, tớ chốt lại: \(A=\left(x^2-2y^2+1\right)\left(x^2+y^2\right)\), đừng xem cái câu cuối ở tin 1, sai đấy.

25 tháng 7 2015

Ta có: x2 + y2 - x2y2 + xy - x - y

       = (x- x2y2) + (y2 - y) + (xy - x)

       = - x2(y- 1) + y(y - 1) + x(y - 1)

       = - x2(y + 1)(y - 1) + (y - 1)(x + y)

       = (y - 1)(x + y - x2y - x2)

       = (y - 1)[- (x2 - x) - (x2y - y)]

       = - (y - 1)[x(x - 1) + y(x- 1)]

       = - (y - 1)[x(x - 1) + y(x + 1)(x - 1)]

       = - (y - 1)(x - 1)[x + y(x + 1)]

       = - (y - 1)(x - 1)(x + xy +y)        

Ta có: x2 + y2 - x2y2 + xy - x - y

       = (x- x2y2) + (y2 - y) + (xy - x)

       = - x2(y- 1) + y(y - 1) + x(y - 1)

       = - x2(y + 1)(y - 1) + (y - 1)(x + y)

       = (y - 1)(x + y - x2y - x2)

       = (y - 1)[- (x2 - x) - (x2y - y)]

       = - (y - 1)[x(x - 1) + y(x- 1)]

       = - (y - 1)[x(x - 1) + y(x + 1)(x - 1)]

       = - (y - 1)(x - 1)[x + y(x + 1)]

       = - (y - 1)(x - 1)(x + xy +y)        

Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng

20 tháng 7 2018

sao lại là x^2y

20 tháng 7 2018

nghĩa là x^2 nhân với y