Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(x^2-6x+2023\)
\(=x^2-2\cdot x\cdot3+3^2+2014\)
\(=\left(x-3\right)^2+2014\ge2014\forall x\)
Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(B=\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)
Dễ thấy đây là HĐT thứ 2
\(B=\left(3x-5-3x-5\right)^2\)
\(B=\left(-10\right)^2\)
\(B=100\)
=> tự kết luận
Bài 2 :
\(x^2+4x-45\)
\(=x^2+9x-5x-45\)
\(=x\left(x+9\right)-5\left(x+9\right)\)
\(=\left(x+9\right)\left(x-5\right)\)
1a) A=x2 - 6x + 9 +2014
A= (x-3)2 + 2014
ta có: (x-3)2\(\ge\)0\(\forall x\)
\(\Rightarrow\left(x+3\right)^2+2014\ge2014\)
Dấu "=" xảy ra <=> (x+3)2 = 0
<=> x+3=0
<=> x = -3
Vậy Amin=2014 <=> x = -3
b) B= \(\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)
= \(\left(3x+5-3x+5\right)^2\)
= 52 = 25
2)\(x^2+4x-45\)
= \(x^2+9x-5x-45\)
=\(x\left(x+9\right)-5\left(x+9\right)\)
=\(\left(x-5\right)\left(x+9\right)\)
\(x^2-x+1=x^2-2\times x\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)\(\frac{3}{4}\)
= \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)
=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
vậy Min A= \(\frac{3}{4}\)dấu bằng xảy ra khi và chỉ khi \(x=\frac{1}{2}\)
ở trên bạn bỏ hộ mk 1 phân số \(\frac{3}{4}\)đi nhé mk viết thừa.
Ta có : E = 2x4 + 3x2 + 7
Mà : 2x4 \(\ge0\forall x\in R\)
3x2 \(\ge0\forall x\in R\)
Nên : E = 2x4 + 3x2 + 7 \(\ge7\forall x\in R\)
Vây GTNN của E = 7
Dấu "=" sảy ra khi : \(\hept{\begin{cases}2x^4=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^4=0\\x^2=0\end{cases}\Leftrightarrow}x=0}\)
b) A =(x-1)(x+6).(x+2)(x+3) = ( x2 +5x -6)(x+5x+6) =x2(x+5)2 - 36 >/ -36
A min = -36 khi x =0 hoạc x =- 5
Phân tích đa thức thành nhân tử:
x2 + 2xy +y2 -3x - 3y -10
=(x2 +2xy +y2)- (3x+ 3y)-10
=(x+y)2 - 3.(x+y)-10
=(x+y).(x+y-3)-10
cháu tôi học ghê thế :))
a) 3x3 - 7x2 + 17x - 5
= 3x3 - x2 - 6x2 + 2x + 15x - 5
= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )
= ( 3x - 1 )( x2 - 2x + 5 )
b) Đặt A = a2 + ab + b2 - 3a - 3b + 3
=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12
= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )
= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b
hay 4A ≥ 0 => A ≥ 0
Dấu "=" xảy ra <=> a = b = 1
a.
\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)
\(=\left(3x-1\right)\left[x^2-2x+5\right]\)
b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)
\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)
dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Cai dau tien a^2 +a-6= a(a+1)-6=(a+1)*(a-6)