K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

 làm bừa thui,ai trên 11 điểm tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

17 tháng 9 2018

đéo biết giải nhé

31 tháng 10 2015

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)

\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)

\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)

\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

mình làm vội, có chỗ nào sai bạn thông cảm nha

20 tháng 8 2018

a ( b2 + c2 + bc ) + b ( a2 + c2 + ac ) + c ( a2 + b2 + ab )

= ab2 + ac2 + abc + ba2 + bc2 + abc + ca2 + cb2 +abc

= ( ab2 + a2b + abc ) + ( ac2 + a2c + abc ) + ( bc2 + b2c + abc )

= ab ( a + b + c ) + ac ( a + b + c ) + bc ( a + b + c )

= ( a + b + c ) ( ab + ac + bc ) 

\(a\left(b^2+c^2+bc\right)+b\left(a^2+c^2+ac\right)+c\left(a^2+b^2+ab\right)\)

\(=ab^2+ac^2+abc+ba^2+bc^2+abc+ca^2+cb^2+abc\)

\(=\left(ab^2+ba^2+abc\right)+\left(bc^2+cb^2+abc\right)+\left(ca^2+ac^2+abc\right)\)

\(=ab\times\left(a+b+c\right)+bc\times\left(a+b+c\right)+ca\times\left(a+b+c\right)\)

\(=\left(a+b+c\right)\times\left(ab+bc+ca\right)\)

11 tháng 2 2016

ủng hộ mình lên 220 nha các bạn

26 tháng 6 2019

\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)

\(=ab^2-ac^2-ba^2+bc^2+ca^2-cb^2\)

\(=\left(ab^2-ac^2-bc^2\right)-\left(ba^2-bc^2-ca^2\right)\)

\(=a\left(b^2-c^2\right)-bc^2-a^2\left(b-c\right)+bc^2\)

\(=a\left(b^2-c^2\right)-a^2\left(b-c\right)\)

\(=a\left(b-c\right)\left(b+c\right)-a^2\left(b-c\right)\)

\(=\left(b+c\right)\left[a\left(b-c\right)-a^2\right]\)

\(=\left(b+c\right)\left(ab-ac-a^2\right)\)

\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)

\(=c\left(a^2-b^2\right)+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)

\(=-c\left[\left(b^2-c^2\right)+\left(c^2-a^2\right)\right]+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)

\(=\left(a-c\right)\left(b^2-c^2\right)+\left(b-c\right)\left(c^2-a^2\right)\)

\(=\left(a-c\right)\left(b-c\right)\left(b+c\right)+\left(b-c\right)\left(c-a\right)\left(c+a\right)\)

\(=\left(a-c\right)\left(b-c\right)\left(b-a\right)\)

9 tháng 7 2015

hở mà phân tích đa thức thành nhân tử:mà

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)