![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^8+x^4-2\)
\(=\left(x^8-1\right)+\left(x^4-1\right)\)
\(=\left(x^4+1\right)\left(x^4-1\right)+\left(x^4-1\right)\)
\(=\left(x^4-1\right)\left(x^4+2\right)=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a(x2 + 1) - x(a2 + 1)
= ax2 + a - a2x - x
= (ax2 - a2x) + (a - x)
= -ax(a - x) + (a - x)
= (a - x)(-ax + 1)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^7+x^2+1\)
\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^5+x^4+2\)
\(=x^5+x^4+x^2-x^2+1+1\)
\(=\left(x^5-x^2\right)+\left(x^4+x^2+1\right)\)
\(=\left(x^5-x^2\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x^3-1\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(\left(x^2+1\right)^2-x^2\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3+1-x\right)+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^4+x^2+1\)
\(=x^4-x+x^2+x+1\)
\(=x\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Lớp 8 phân tích cái này thì hơi ngô khoai đấy cơ bằng đổi thành:
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\) thì còn dễ phân tích
Mạn phép sửa đề nhé:)
\(\orbr{\begin{cases}x^2-x-20\\x^2+x-20\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x^2+4x\right)-\left(5x+20\right)\\\left(x^2-4x\right)+\left(5x-20\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-5\right)\\\left(x-4\right)\left(x+5\right)\end{cases}}\)
Còn nếu như giữ nguyên đề thì phân tích không ra đâu nhé:)
Nếu giữ nguyên thì ...
\(x^2+x+20\)
\(=\left(x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{79}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{79}{4}\ge\frac{79}{4}>0\forall x\)
> 0 thì lấy đâu ra nghiệm :)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
a) \(x^3+2x=x\left(x^2+2\right)\)
b) \(3x^3-12x^2=3x^2\left(x-4\right)\)
Ta có: A = x2 - x - 1991.1992
=> A = x2 - x - 1991 . 1991 - 1991
=> A = (x2 - 19912) - (x + 1991)
=> A = (x + 1991)(x - 1991) - (x + 1991)
=> A = (x + 1991)(x - 1991 - 1)
=> A = (x + 1991)(x - 1992)