\(x^3\)+2x

b,3\(x^3\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

Trả lời:

a) \(x^3+2x=x\left(x^2+2\right)\)

b) \(3x^3-12x^2=3x^2\left(x-4\right)\)

26 tháng 7 2020

a.\(x^3+2x=x\left(x^2+2\right)\)

b.\(3x^3-12x^2=3x^2\left(x-4\right)\)

Chúc bạn học tốt!

11 tháng 12 2019

a ) x3 - 2x2 + x

= x3 - x2 - x+ x

= ( x3 - x2 ) - ( x2 - x )

= x2 . ( x - 1 ) - x . ( x - 1 )

= ( x - 1 )( x2 - x )

b ) x3 - 3x2 - 4x + 12

= ( x3 - 3x2 ) - ( 4x - 12 )

=  x2 . ( x - 3 ) - 4 . ( x - 3 )

= ( x - 3 )( x2 - 4 )

= ( x - 3 )( x - 2 )( x + 2 )

27 tháng 9 2019

a,(x-4)(x+3)

b,(x-1)(x^2+x+3)

27 tháng 9 2019

a/\(x^2-x-12\)

\(=x^2+3x-4x-12\)

\(=\left(x^2+3x\right)-\left(4x+12\right)\)

\(=x\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x+3\right)\left(x-4\right)\)

b/ \(x^3+2x-3\)

\(=x^3+x^2-x^2+3x-x-3\)

\(=\left(x^3-x^2\right)+\left(3x-3\right)+\left(x^2-x\right)\)

\(=x^2\left(x-1\right)+3\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+3+x\right)\)

1 tháng 10 2016

b)x3-7x+6=x3-x-6x+6=x(x2-1)-6(x-1)=x(x-1)(x+1)-6(x-1)

=(x-1)[x(x+1)-6]=(x-1)(x2+x-6)=(x-1)(x2+3x-2x-6)=(x-1)[x(x+3)-2(x+3)]=(x-1)(x-2)(x+3)

c)x3-x2-x-2

=x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 9 2018

\(x^3-7x+6\)

\(=x^3-x^2+x^2-x-6x+6\)

\(=x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x-6\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)

4 tháng 11 2016

a , 3x2 + 3y2 - 6xy - 12

= 3 ( x2 + y2 - 2xy - 4 )

= 3 ( x - y )2 - 22

= 3 ( x - y + 2 ) ( x - y - 2 )

 

 

\(x^2+2x-3\)

\(=x^2-x+3x-3\)

\(=x\left(x-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x+3\right)\)

\(2x^2+6x-x-3\)

\(=2x\left(x+3\right)-\left(x+3\right)\)

\(=\left(x+3\right)\left(2x-1\right)\)

a)\(x^2+2x-3=x^2+3x-x-3\) 

                           \(=x\left(x+3\right)-\left(x+3\right)\)

                            \(=\left(x+3\right)\left(x-1\right)\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

28 tháng 7 2020

a) 12x3 + 4x2 + 9x + 3 = 4x2(3x + 1) + 3(3x + 1) = (4x2 + 3)(3x + 1)

b) x3 + 2x2 - x - 2 = x2(x + 2) - (x + 2) = (x2 - 1(x + 2) = (x - 1)(x + 1)(x + 2)

c) a3 + (a - b)3 = (a + a - b)[a2 - a(a - b) + (a - b)2] = (2a - b)(a2 - a2 + ab +  a2 - 2ab + b2)

= (2a - b)(a2 - ab + b2)

28 tháng 7 2020

a) 12x3 + 4x2 + 9x + 3

= 4x2(3x + 1) + 3(3x + 1)

= (4x2 + 3)(3x + 1)

b) x3 + 2x2 - x - 2

= x2(x + 2) - (x + 2)

= (x2 - 1)(x + 2)

c) a3 + (a - b)3 

= a3 - a2(a - b) + a(a - b)2 + (a - b)a2 - (a - b)2a + (a - b)3

= a[(a2 - a(a - b) + (a - b)2] + (a - b)[a2 - a(a - b) + (a - b)2]

= (a + a - b)[(a2 - a(a - b) + (a - b)2]

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)