Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3a^2x-3a^2y+abx-aby\)
\(=3a^2\left(x-y\right)+ab\left(x-y\right)\)
\(=a\left(x-y\right)\left(3a+b\right)\)
c) Ta có: \(2ax^3+6ax^2+6ax+18a\)
\(=2ax^2\left(x+3\right)+6a\left(x+3\right)\)
\(=2a\left(x+3\right)\left(x^2+3\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(A=x^4+4\)
\(=\) \(x^4+4+4x^2-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(A=\) \(\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(A=x^2+4=\left(x^2+4x+4\right)-4x=\left(x+2\right)^2-\sqrt{4x}=\left(x+2-\sqrt{4x}\right)\left(x+2+\sqrt{4x}\right)\)
\(B=x^4+4y^4=\left(x^4+4x^2y^2+4y^4\right)-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)
Ta có: \(2ax^3+6ax^2+6ax+18a\)
\(=2\left[\left(ax^3+3ax^2\right)+\left(3ax+9a\right)\right]\)
\(=2a\left[x^2\left(x+3\right)+3\left(x+3\right)\right]\)
\(=2a\left(x+3\right)\left(x^2+3\right)\)
2ax3 + 6ax2 + 6ax + 18a
= 2a( x3 + 3x2 + 3x + 9 )
= 2a[ ( x3 + 3x2 ) + ( 3x + 9 ) ]
= 2a[ x2( x + 3 ) + 3( x + 3 ) ]
= 2a( x + 3 )( x2 + 3 )