K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

= (2x)3- y3 + ( 4x2y +2xy + y2)

= (2x - y +1)(4x2y + 2xy + y2)

( hiu k? a3 - b3 mà a = 2x ; b =y)

3 tháng 10 2016

x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3

= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)

(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2

=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)

x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)

 

Phân tích đa thức thành nhân tử :

    8x- 8x2y + 2xy2

8x3 - 4x2y - 4x2y + 2xy2

= 4x2( x - y ) - 2xy ( x - y )

= ( x - y)(4x- 2xy)

=  2x(x - y)(2x - y)

1 tháng 1 2020

\(8x^3+4x^2-y^3-y^2\)

\(=\left(8x^3-y^3\right)+\left(4x^2-y^2\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2+2x+y\right)\)

29 tháng 9 2018

\(x^2-2xy+y^2-a^2+4ab-4b^2\)

\(=\left(x-y\right)^2-\left(a-2b\right)^2\)

\(=\left(x-y-a+2b\right)\left(x-y+a-2b\right)\)

hk tốt

^^

19 tháng 7 2015

a,  ( 2x - 1)^2 - (4x + 2) ^2 = ( 2x - 1 - 4x- 2) ( 2x - 1 + 4x + 2) = (-2x-3)(6x+1) = - (2x+3)(6x+1)

b, 8x^3 + 12x^2y + 6xy^2 + y^3 

= (2x)^2 + 3.(2x)^2 . y + 3.2x.y^2 + y^3 

= (2x + y)^3 

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

24 tháng 10 2016

a) \(4x^2-8x+4-9\left(x-y\right)^2\)

\(=4\left(x^2-2x+1\right)-9\left(x-y\right)^2\)

\(=\left[2\left(x-1\right)\right]^2-\left[3\left(x-y\right)\right]^2\)

\(=\left(2x-2+3x-3y\right)\left(2x-2-3x+3y\right)\)

\(=\left(5x-3y-2\right)\left(3y-x-2\right)\)

b) \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

14 tháng 8 2016

\(x^3-4x-12+3x^2=x\left(x^2-2^2\right)+3\left(x^2-2^2\right)=\left(x-2\right)\left(x+2\right)\left(x+3\right)\)

\(x^2+2xy-15y^2=x^2+2xy+y^2-16y^2=\left(x+y\right)^2-\left(4y\right)^2=\left(x-3y\right)\left(x+5y\right)\)

\(\left(x-y\right)^2-6\left(x-y\right)-16=\left(x-y\right)^2-2\times\left(x-y\right)\times3+9-25=\left(x-y-3\right)^2-5^2=\left(x-y-8\right)\left(x-y+2\right)\)

19 tháng 10 2021

1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)

Ta đặt: \(x^2+8x+7=n\)

\(=n.\left(n+8\right)+15\)

\(=n^2+8n+15\)

\(=n^2+3n+5n+15\)

\(=\left(n^2+3n\right)+\left(5n+15\right)\)

\(=n.\left(n+3\right)+5.\left(n+3\right)\)

\(=\left(n+3\right).\left(n+5\right)\)

\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)

\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)

\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)

19 tháng 10 2021

2) \(x^2-2xy+3x-3y-10+y^2\)

\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)

Ta đặt: \(x-y=n\)

\(=n^2+3n-10\)

\(=n^2-2n+5n-10\)

\(=\left(n^2-2n\right)+\left(5n-10\right)\)

\(=n.\left(n-2\right)+5.\left(n-2\right)\)

\(=\left(n-2\right).\left(n+5\right)\)

\(=\left(x-y-2\right).\left(x-y+5\right)\)

8 tháng 10 2019

\(a,4x^4-8x^3+4x^2\)

\(=4x^2\cdot\left(x^2-2x+1\right)\)

\(=4x^2\cdot\left(x-1\right)^2\)

\(b,x^2-y^2+5\cdot\left(y-x\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)-5\cdot\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(x+y-5\right)\)

\(c,3x^2-6xy+3y^2-12z^2\)

\(=3\cdot\left(x^2-2xy+y^2-4x^2\right)\)

\(=3\cdot\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)

\(=3\cdot\left(x-y-2x\right)\cdot\left(x-y+2x\right)\)