Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2+4\left(x-y\right)-5=\left(x-y\right)^2+4\left(x-y\right)^2+4-9\)
\(=\left(x-y+2\right)^2-3^2=\left(x-y+5\right)\left(x-y-1\right)\)
\(=\left(x^2-6x+9\right)-4y^2\)
\(=\left(x-3\right)^2-\left(2y\right)^2\)
\(=\left(x-3-2y\right)\left(x-3+2y\right)\)
= ( x^2 - 4y^2 ) + ( 9 - 6x)
= [ x^2 - (2y)^2 ] + 3( 3 - 2x )
= (x - 2y)(x + 2y)+ 3(3 - 2x)
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
* Chứng minh:
Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a.x2 + bx + c (đpcm).
* Áp dụng:
a) 2x2 – 5x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
x2-2xy =x(x-2y)
Cái này giúp gì vậy ????
:)))
Chọn đáp án A.
Ta có:
x 2 - 2 3 . x + 3 = x 2 - 2 x ( 3 ) + ( 3 ) 2 = ( x - 3 ) 2
Ta có: \(x^2+y^2+2xy+x+y-6\)
\(=\left(x+y\right)^2+x+y-6\)
\(=\left(x+y\right)^2+x+y-9+3\)
\(=\left[\left(x+y\right)^2-3^2\right]+\left(x+y+3\right)\)
\(=\left(x+y-3\right)\left(x+y+3\right)+\left(x+y+3\right)\)
\(=\left(x+y+3\right)\left(x+y-2\right)\)
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
=4(x-y) +(x-y)^2 =(x-y)(x-y+4)
TL:
\(4x-4y+x^2-2xy+y^2\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(4+x-y\right)\left(x-y\right)\)