Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^3-a^3-b^3-c^3=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b^3+c^3\right)\)
\(=\left(b+c\right)\left(2a^2+b^2+c^2+2ab+2bc+2ca+a^2+ab+ac\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(=\left(b+c\right)\left(3a^3+3ab+3bc+3ca\right)=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)
\(=3\left(b+c\right)\left(c+a\right)\left(a+b\right)\)
a) A = (x2 - 2.x.3 + 32) - (3y)2
A = (x - 3)2 - (3y)2
A = (x - 3 - 3y)(x-3+3y)
b) B = (x-1)3 + 2(x-1)(x+1)
B=(x-1)[(x-1)2 - 2(x+1)]
B = (x-1)[x2 - 4x - 3]
a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6
=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)
=(x-3)(2x3-x2-5x-2)
=(x-3)(2x3-4x2+3x2-6x+x-2)
=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]
=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)
b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)
=(x-3)(x-2)(x+1)[2(x-1)+3]
=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)
vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2
=>3(x-3)(x-2)(x+1) chia hết cho 6
lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6
Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z
a) = a3+b3+c3 +3a2b +3ab2 -3ab(a+b) - 3abc
= (a+b)3+c3-3ab(a+b)-3abc (áp dụng A3+B3 ta có)
=(a+b+c) ( (a+b)2 - (a+b)c +c2) - 3ab(a+b+c)
=(a+b+c) ( (a+b)2 - (a+b)c +c2 - 3ab) (nhân tử chung là a+b+c)
=(a+b+c) ( a2+2ab+b2- ac-bc +c2 -3ab)
=(a+b+c) (a2+b2+c2-ab-ac-bc)
Phần b tương tự
\(a,4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
\(b,x^2-9x+20=x^2-4x-5x+20\)
\(=x\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(x-5\right)\)
\(c,x^2+7x+12=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
1.
7x(2x-1)=14x2-7x
2
a. x2+2x=x(x+2)
b.x2-xy+3x-3y
=x(x-y)+3(x-y)
=(x+3)(x-y)
Câu 2:
1. 2x/2x-5 - 5/2x-5
=2x-5/2x-5
=1
2. (6x3-7x2-x+2) : (x-1)=6x2-x-2
3x2 + 14xy = x(3x + 14y)