K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)

\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)

\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)

\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

mình làm vội, có chỗ nào sai bạn thông cảm nha

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

26 tháng 10 2016

a,(b-a)^2+(a-b)*(3a-2b)-a^2+b^2

=(a-b)^2+(a-b)*(3a-2b)-(a^2-b^2)

=(a-b)^2+(3a-2b)-(a-b)*(a+b)

=(a-b)*(a-b+3a-2b-a-b)

=(a-b)*(3a-4b)

26 tháng 10 2016

b, Đặt x^2-2x+4=a=>x^2-2x+3=a-1

x^2-2x+5=a+1

=>phương trình ban đàu sẽ thành:

(a+1)*(a-1)=8

<=>a^2-1=8

<=>a^2=9

<=>a=3 hoặc a=-3

quay về biến cũ ta có

TH1a=3=>x^2-2x+4=3

<=>x^2-2x+1=0

<=>(x-1)^2=0

<=>x-1=0

<=>x=1

TH2 a=-3=>x^2-2x+4=-3

=>(x^2-2x+1)+6=0

<=>(x-1)^2+6=0

do (x-1)^2>=0 với mọi x=>(x-1)^2+6>0 với mọi x

=> phương trình vô nghiệm

Vậy phương trình có 1 nghiệm là x=1

28 tháng 6 2018

1)(x^2+3x+1)(x^2+3x+2)-6

Đặt t = x + 3x + 1

Khi đó PT có dạng:

t.(t + 1) - 6

= t2 + t - 6

= t2 - 2t - 3t - 6

= t.(t - 2) + 3.(t - 2)

= (t + 3).(t - 2)

= (x2 + 3x + 1 + 3).(x2 + 3x + 1 - 2)

= (x2 + 3x + 4).(x2 + 3x - 1)

28 tháng 6 2018

\(1\hept{\begin{cases}\left(x^2+3x+2-1\right)\left(x^2+2x+2\right)-6\\\left(t-1\right)\left(t\right)-6\\t^2-t-6\end{cases}}.\) " đặt x^2+3x+2 = t

\(\hept{\begin{cases}t^2-\frac{2t.1}{2}+\frac{1}{4}-\left(\frac{24+1}{4}\right)\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\end{cases}}\)

\(\hept{\begin{cases}\left(t-\frac{1}{2}-\frac{5}{2}\right)\left(t-\frac{1}{2}+\frac{5}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\end{cases}}\)

2)  \(\hept{\begin{cases}\left\{\left(x+1\right)\left(x+7\right)\right\}\left\{\left(x+5\right)\left(x+3\right)\right\}+15\\\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\\t\left(t+8\right)+15\end{cases}}\)  

\(\hept{\begin{cases}t^2+8t+15\\\left(t^2+8t+16\right)-1\\\left(t+4\right)^2-1\end{cases}}\Leftrightarrow\left(t+5\right)\left(t+4\right)\)

\(\hept{\begin{cases}a^3\left(b-c\right)+b^3\left(c-a+b-b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(-c+a-b+b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(a-b\right)-b^3\left(b-c\right)+c^3\left(a-b\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\\\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+ab+c^2\right)\\\left(a-b\right)\left(b-c\right)\left(a^2+2ab+2b^2+c^2\right)\end{cases}}}\)