Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)
a) \(A=\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)-10\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+15\right)-10\)
Đặt \(x^2+8x+12=t\)
Khi đó ta có:
\(A=t\left(t+3\right)-10\)
\(=t^2+3t-10\)
\(=\left(t-2\right)\left(t+5\right)\)
Thay trở lại ta có:
\(A=\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
b) \(B=x\left(2x+1\right)\left(2x+3\right)\left(4x+8\right)-18\)
\(=\left(4x^2+8x\right)\left(4x^2+8x+3\right)-18\)
Đặt \(4x^2+8x=t\)
Khi đó ta có:
\(B=t\left(t+3\right)-18=t^2+3t-18=\left(t-3\right)\left(t+6\right)\)
Thay trở lại ta có:
\(B=\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)=2\left(4x^2+8x-3\right)\left(2x^2+4x+3\right)\)
a, Đặt A=...=(x+2)(x+6)(x+3)(x+5)-10=(x2+8x+12)(x2+8x+15)-10
Đặt x2+8x+12=y
=>A=y(y+3)-10=y2+3y-10=y2-2y+5y-10=y(y-2)+5(y-2)=(y-2)(y+5)=(x2+8x+12-2)(x2+8x+12+5)=(x2+8x+10)(x2+8x+17)
b, Đặt B=...=x(4x+8)(2x+1)(2x+3)-18=(4x2+8x)(4x2+8x+3)-18
Đặt 4x2+8x=t
=>B=t(t+3)-18=t2+3t-18=t2-3t+6t-18=t(t-3)+6(t-3)=(t-3)(t+6)=(4x2+8x-3)(4x2+8x+6)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
다른 사람을 물어보세요! 알았지? 난 대답을 모르겠어요. 정말 미안 해요. 당신에게 좋은 날이 젠장!다른 사람을 물어보세요! 알았지? 난 대답을 모르겠어요. 정말 미안 해요. 당신에게 좋은 날이 젠장!
câu nào mình biết mình trl trc nha:
\(\left(x^2+1\right)^2-4x^2\)
\(=x^4+2x^2+1-4x^2\)
\(=x^4-2x^2+1\)
\(\left(x^2-1\right)^2\)
a, Ta có: \(x^3+2x^2y+xy^2-4x\)
\(=x\left(x^2+2xy+y^2-4\right)\)
\(=x\left[\left(x+y\right)^2-2^2\right]\)
\(=x\left(x+y+2\right)\left(x+y-2\right)\)
b, Ý này dễ lắm, cậu tự làm nha!!!
a) x4 + 2x3 + 2x2 + 2x + 1
= x4 + 2x3 + x2 + x2 + 2x + 1
= ( x4 + 2x3 + x2 ) + ( x2 + 2x + 1 )
= x2( x2 + 2x + 1 ) + ( x2 + 2x + 1 )
= ( x + 1 )2( x2 + 1 )
b) 4x8 + 1
= 4x8 + 4x4 + 1 - 4x4
= ( 2x4 + 1 )2 - ( 2x2 )2
= ( 2x4 - 2x2 + 1 )( 2x4 + 2x2 + 1 )
\(x^3+2x^2-4x-8=x^2\left(x+2\right)-4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-4\right)=\left(x+2\right)\left(x+2\right)\left(x-2\right)=\left(x+2\right)^2\left(x-2\right)\)
\(a^3-8a^2+16a=a\left(a^2-8a+16\right)=a\left(a-4\right)^2\)
\(a,x^3+2x^2-4x-8=x^2\left(x+2\right)-4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-4\right)=\left(x+2\right)\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)^2\left(x-2\right)\)
\(b,a^3-8a^2+16a=a\left(a^2-8a+16\right)\)
\(=a\left(a-4\right)^2\)