Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(y - z) + 2(z - y)
= x(y - z) - 2(y - z)
= (x - 2)(y - z)
(2x - 3y)(x - 2) - (x + 3)(3y - 2x)
= (2x - 3y)(x - 2) + (x + 2)(2x - 3y)
= (2x - 3y)(x - 2 + x + 2)
= 2x(2x - 3y)
a.) 2x2 - 7xy + 6y2 + 9x - 13y + 5
= (2x -3y)(x-2y) + 5(2x - 3y) -x +2y -5
= (2x - 3y)(x-2y + 5) - (x - 2y + 5)
=(x-2y+5)(2x-3y-1)
ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
Cho mình nhé hihi!!!
x2(x+4)2-(x+4)2-(x2-1)
=(x+4)2 (x2-1)-(x2-1)
=(x2-1)(x2+8x+16-1)
=(x-1)(x+1)(x2+8x+15)
(x^2-6x+8)(x^2-8x+15)+1
=(x^2-4x-2x+8)(x^2-5x-3x+15)+1
=(x(x-4)-2(x-4))(x(x-5)-3(x-5))+1
=(x-4)(x-2)(x-5)(x-3)+1
=(x-2)(x-5)(x-3)(x-4)+1
=(x^2-7x+10)(x^2-7x+12)+1
Gọi a=x^2-7x+11, ta có
(a-1)(a+1)+1
= a2 - 1 + 1
= a2
= (x2 - 7x + 11)2
Ta có :
\(x^{20}+x+1\)
\(=\left(x^{20}-x^2\right)+\left(x^2+x+1\right)\)
Đặt \(x^2+x+1=A\)
\(\Rightarrow x^{20}+x+1=x^2\left(x^{18}-1\right)+A\)
\(=x^2\left(x^9+1\right)\left(x^9-1\right)+A\)
\(=\left(x^{11}+x^2\right)\left[\left(x^3\right)^3-1^3\right]+A\)
\(=\left(x^{11}+x^2\right)\left(x^6+1+x^3\right)\left(x^3-1\right)+A\)
\(=\left(x^{17}+x^{14}+x^{11}+x^8+x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+A\)
\(=A.\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2\right)+A\)
\(=A.\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)
\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)
\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)
\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)
\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)
Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha
f(x)=3x3 – 7x2 + 17x–5f(x)
Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là 3x–13x–1. Nên
f(x)= 3x3 – 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)
= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5
= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7
ta có :
\(x^2+0,25-x=x^2-2.\frac{1}{2}.x+\frac{1}{2^2}=\left(x-\frac{1}{2}\right)^2\)