\(x^2+0,25-x\)

Mọi người ơi mọi người giúp e...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

x(y - z) + 2(z - y)

= x(y - z) - 2(y - z)

= (x - 2)(y - z)

(2x - 3y)(x - 2) - (x + 3)(3y - 2x)

= (2x - 3y)(x - 2) + (x + 2)(2x - 3y)

= (2x - 3y)(x - 2 + x + 2)

= 2x(2x - 3y)

27 tháng 7 2019

1/\(x\left(y-z\right)+2\left(z-y\right)\)\(=\left(y-z\right)\left(x-2\right)\)

2/\(\left(2x-3y\right)\left(x-2\right)-\left(x+3\right)\left(3y-2x\right)\)\(=\left(2x-3y\right)\left(x-2+x+3\right)\)

\(=\left(2x-3y\right)\left(2x+1\right)\)

3 tháng 10 2017

a.) 2x2 - 7xy + 6y2 + 9x - 13y + 5

= (2x -3y)(x-2y) + 5(2x - 3y) -x +2y -5

= (2x - 3y)(x-2y + 5) - (x - 2y + 5)

=(x-2y+5)(2x-3y-1)

22 tháng 10 2017

ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

Cho mình nhé hihi!!!

22 tháng 10 2017

x2(x+4)2-(x+4)2-(x2-1)

=(x+4)2  (x2-1)-(x2-1)

=(x2-1)(x2+8x+16-1)

=(x-1)(x+1)(x2+8x+15)

8 tháng 10 2017

(x^2-6x+8)(x^2-8x+15)+1

=(x^2-4x-2x+8)(x^2-5x-3x+15)+1

=(x(x-4)-2(x-4))(x(x-5)-3(x-5))+1

=(x-4)(x-2)(x-5)(x-3)+1

=(x-2)(x-5)(x-3)(x-4)+1

=(x^2-7x+10)(x^2-7x+12)+1

Gọi a=x^2-7x+11, ta có

(a-1)(a+1)+1

= a2 - 1 + 1

= a2

= (x2 - 7x + 11)2

30 tháng 10 2016

Ta có :

\(x^{20}+x+1\)

\(=\left(x^{20}-x^2\right)+\left(x^2+x+1\right)\)

Đặt \(x^2+x+1=A\)

\(\Rightarrow x^{20}+x+1=x^2\left(x^{18}-1\right)+A\)

\(=x^2\left(x^9+1\right)\left(x^9-1\right)+A\)

\(=\left(x^{11}+x^2\right)\left[\left(x^3\right)^3-1^3\right]+A\)

\(=\left(x^{11}+x^2\right)\left(x^6+1+x^3\right)\left(x^3-1\right)+A\)

\(=\left(x^{17}+x^{14}+x^{11}+x^8+x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+A\)

\(=A.\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2\right)+A\)

\(=A.\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{11}+x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)

1 tháng 11 2018

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)

\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)

\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)

\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)

1 tháng 9 2015

\(=\left(x^7+x^6+x^5-x^3-x^2\right)-\left(x^6+x^5+x^4-x^2-x\right)+\left(x^5+x^4+x^3-x-1\right)\)

\(=x^2\left(x^5+x^4+x^3-x^2-1\right)-x\left(x^5+x^4+x^3-x-1\right)+\left(x^5+x^4+x^3-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^5+x^4+x^3-x^2-1\right)\)

 

13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

31 tháng 10 2016

Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha 

f(x)=3x3 – 7x2 + 17x–5f(x)

Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không  có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là  3x–13x–1. Nên
f(x)= 3x– 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)

= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5

= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
 

31 tháng 10 2016

ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7