K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

 

(x^2+3x+2)(x^2+7x+12)+1

=(x2+x+2x+2)(x2+3x+4x+12)+1

=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]+1

=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

=(x2+5x+4)[(x2+5x+4)+2]+1

=(x2+5x+4)2+2(x2+5x+4)+1

=(x2+5x+4+1)2

=(x2+5x+5)2

10 tháng 11 2015

Đặt \(x^2-3x-1=a\), ta có:

\(a^2-12a+27=a^2-9a-3a+27=a\left(a-9\right)-3\left(a-9\right)=\left(a-9\right)\left(a-3\right)\)

\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

Mà \(x^2-3x-10=x^2-5x+2x-10=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+1\right)\)

và \(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)

\(\Rightarrow\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27=\left(x-5\right)\left(x-4\right)\left(x+1\right)\left(x+2\right)\)

21 tháng 7 2016

Ta có :  \(M=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\) \(\Rightarrow M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

Vậy \(M=\left(x^2+5x+5\right)^2\)

29 tháng 8 2019

Đặt \(x^2-3x-1=a\)thay vào biểu thức ta được :

\(a^2-12a+27\)

\(=a^2-3a-9a+27\)

\(=a\left(a-3\right)-9\left(a-3\right)\)

\(=\left(a-3\right)\left(a-9\right)\)(1)

Thay \(a=x^2-3x-1\)vào (1) ta được :

\(\left(x^2-3x-1-3\right)\left(x^2-3x-1-10\right)\)

\(=\left(x^2-3x-4\right)\left(x^2-3x-11\right)\)

2 tháng 10 2019

Bạn Châu sai đáp án cuối

phải là (x2-3x-4)(x2-3x-10) nha

24 tháng 8 2015

 

(x^2+3x+2)(x^2+7x+12)

=(x2+x+2x+2)(x2+3x+4x+12)

=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]

=(x+1)(x+2)(x+3)(x+4)

24 tháng 8 2015

 

(x^2+3x+2)(x^2+7x+12)-24

=(x2+x+2x+2)(x2+3x+4x+12)-24

=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]-24

=(x+1)(x+2)(x+3)(x+4)-24

=(x+1)(x+4)(x+2)(x+3)-24

=(x2+5x+4)(x2+5x+6)-24

Đặt t=x2+5x+4 ta được:

t.(t+2)-24

=t2+2t-24

=t2-4t+6t-24

=t.(t-4)+6.(t-4)

=(t-4)(t+6)

thay t=x2+5x+4 ta được:

(x2+5x+4-4)(x2+5x+4+6)

=(x2+5x)(x2+5x+10)

=x.(x+5)(x2+5x+10)

Vậy (x^2+3x+2)(x^2+7x+12)-24=x.(x+5)(x2+5x+10)

1 tháng 12 2017

hay quá bạn ơi

21 tháng 6 2016

Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.

\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)

Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

Câu sau tương tự nhé :)