Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 3x - 18 = 0
⇔ x2 - 3x + 6x - 18 = 0
⇔ x( x - 3 ) + 6( x - 3 ) = 0
⇔ ( x - 3 )( x + 6 ) = 0
⇔ x - 3 = 0 hoặc x + 6 = 0
⇔ x = 3 hoặc x = -6
b) x3 - x2 - 4 = 0
⇔ x3 - 2x2 + x2 - 4 = 0
⇔ x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0
⇔ ( x - 2 )( x2 + x + 2 ) = 0
⇔ x - 2 = 0 hoặc x2 + x + 2 = 0
⇔ x = 2 < do x2 + x + 2 = ( x2 + x + 1/4 ) + 7/4 = ( x + 1/2 )2 + 7/4 ≥ 7/4 > 0 ∀ x
b) x3 - 6x2 - x + 30 = 0
⇔ x3 - 5x2 - x2 + 5x - 6x + 30 = 0
⇔ x2( x - 5 ) - x( x - 5 ) - 6( x - 5 ) = 0
⇔ ( x - 5 )( x2 - x - 6 ) = 0
⇔ ( x - 5 )( x2 - 3x + 2x - 6 ) = 0
⇔ ( x - 5 )[ x( x - 3 ) + 2( x - 3 ) ] = 0
⇔ ( x - 5 )( x - 3 )( x + 2 ) = 0
⇔ x - 5 = 0 hoặc x - 3 = 0 hoặc x + 2 = 0
⇔ x = 5 hoặc x = 3 hoặc x = -2
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a/ x4 +5x3 +10x-4
=(x4- 4)+(5x3 + 10x)
=(x2+2) (x2-2) + 5x(x2 +2 )
=(x2+2)(x2 -2 +5x)
b/x5 - x4 +x3 -x2 +x-1
=x4(x-1)+x3(x-1)+(x-1)
=(x-1)(x4+x3+1)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
1:
a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
2
\(-2x^2-4x+6=0\)
\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
1,
a) x( x2 + 2x +1) = x(x+1)2
b)25 - (x-2y)2 = (5-x+2y)(5+x-2y)
2,
(x-1)(x+3)=0
<=>x=1 hoặc x=-3
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OKz
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
x3-5x2+x-5=0
=> x2.(x-5)+(x-5)=0
=> (x-5).(x2+1)=0
=> x-5=0 hoặc x2+1=0
=> x=5 hoặc x2=-1 (vô lí)
Vậy x=5.
x4-2x3+10x2-20x=0
=> x3.(x-2)+10x(x-2)=0
=> (x-2).(x3+10x)=0
=> x.(x-2).(x2+10)=0
=> x=0 hoặc x-2=0 hoặc x2+10=0
=> x=0 hoặc x=2 hoặc x2=-10 (vô lí)
Vậy x=0 hoặc x=2.
Ta có
x+x2-x3-x4=x(x+1)-x3(x+1)=(x+1)(x-x3)=x(x+1)(1-x)(1+x)
bây h đi ngủ hết rồi, ko ai tl đâu
tui cx đi ngủ đây bye