K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

a) \(=2xy^2\left(x^2+8x+15\right)\)

\(=2xy^2\left[\left(x^2+8x+16\right)-1\right]\)

\(=2xy^2\left[\left(x+4\right)^2-1\right]\)

\(=2xy^2\left(x+4+1\right)\left(x+4-1\right)\)

\(=2xy^2\left(x+5\right)\left(x-3\right)\)

mấy câu sau tự làm nha :*

29 tháng 10 2017

b,=(x^2-10x+25)-4

  =(x-5)^2-2^2

  =(x-5-2)(x-5+2)

  =(x-7)(x-3)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

20 tháng 9 2017

a) 5x-15y=5x-3.5.y=5(x-3y)

c) 14xy(xy+28x)

d) \(\dfrac{2}{7}\left(3x-1\right)\left(x-1\right)\)

e) (x-1)3

f) (x+y-2x)(x+y+2x)=(y-x)(3x+y)

g) (3x+\(\dfrac{1}{2}\))(9x2+\(\dfrac{3}{2}x\)+\(\dfrac{1}{4}\))

h) (x+y-x+y)\(\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

20 tháng 9 2017

2a)

(x+1)(x2+2x)=0

(x+1)x(x+2)=0

\(\left[{}\begin{matrix}x+1=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\)

16 tháng 8 2018

Mk chỉ lm 2 phần đầu thôi ,bn tham khảo nha!!!

\(a,\left(3x-1\right)^2-16=\left(3x-1+4\right)\left(3x-1-4\right)=\left(3x+3\right)\left(3x-5\right)=3\left(x+1\right)\left(3x-5\right)\)

\(b,\left(5x-4\right)^2-49x^2=\left(5x-4+7x\right)\left(5x-4-7x\right)\)

\(=\left(12x-4\right)\left(-2x-4\right)\)

\(=4\left(3x-1\right)\left(-2\right)\left(x+2\right)\)

\(=-8\left(3x-1\right)\left(x+2\right)\)

=.= hok tốt!!

30 tháng 9 2018

\(\left(3x-1\right)^2-16\)

\(=\left(3x-1\right)^2-4^2\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

\(=3\left(x+1\right)\left(3x-5\right)\)

Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. Bài 7: Phân tích đa thức thành nhân tử e. (x2 + y5 - 5)2 - 4 (xy + 2)2 f. (4x2 - 3x - 18)2 - (4x2 +3x)2 Bài 10: Phân tích đa thức thành nhân tử a. x2 - 4x2y2 + y2 +2xy b. x6 - y6 c. 25 - x2 + 2xy - y2 d. 4b2c2 - (b2 + c2 - a2) e. (x + y + z)2 + (x + y -z)2 - 4z2 f. 9 (x +y - 1)2 - 4 (2x + 3y + 1)2 Bài 11: Phân tích đa thức thành nhân tử a. (x2 - 25)2...
Đọc tiếp

Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.

Bài 7: Phân tích đa thức thành nhân tử

e. (x2 + y5 - 5)2 - 4 (xy + 2)2

f. (4x2 - 3x - 18)2 - (4x2 +3x)2

Bài 10: Phân tích đa thức thành nhân tử

a. x2 - 4x2y2 + y2 +2xy

b. x6 - y6

c. 25 - x2 + 2xy - y2

d. 4b2c2 - (b2 + c2 - a2)

e. (x + y + z)2 + (x + y -z)2 - 4z2

f. 9 (x +y - 1)2 - 4 (2x + 3y + 1)2

Bài 11: Phân tích đa thức thành nhân tử

a. (x2 - 25)2 - (x - 5)2

b. (4x2 - 25)2 - 9(2x - 5)2

c. 4 (2x - 3)2 - 9 (4x2 - 9)2

d. x6 - x4 + 2x3 + 2x2

e. (3x3 + 3x + 2)2 - (3x2 + 3x - 2)2

f. x3 + y3 + z3 - 3xyz

Bài 12: Phân tích đa thức thành nhân tử

a. (xy +1)2 - (x + y)2

b. (x + y)3 - (x - y)3

c. 3x4y2 + 3x3y2 + 3xy2 + 3y2

d. 4 (x2 - y2) - 8 (x - ay) - 4 (a2 -1)

e. (x +y)3 -1 -3xy (x +y -1)

Bài 13: Tính nhanh:

b. 482 - 422 + 64 - 522

d. 722 + 144.16 + 162 - 122

e. \(\dfrac{43^2-11^2}{\left(36-5\right)^2-\left(27-5\right)^2}\)

f. 732 - 132 - 102 + 20.13

1

Bài 12: 

a: \(=\left(xy+1+x+y\right)\left(xy+1-x-y\right)\)

\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left[x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(x+1\right)\left(x-1\right)\left(y+1\right)\left(y-1\right)\)

b: \(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

c: \(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left[x^3\left(x+1\right)+\left(x+1\right)\right]\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

 

18 tháng 9 2017

a) 5x - 15y = 5(x - 3y)

b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y

= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y

= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y

c) 14x2y2 - 21xy2 + 28x2y

= 7xy.xy - 7xy.3y + 7xy.4x

= 7xy(xy - 3y + 4x)

= 7xy[(xy - 3y) + 4x]

= 7xy[y(x - 3) +4x]

d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)

= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )

= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]

e) x3 - 3x2 + 3x - 1

= x2.x - 3x.x + 3.x - 1

= x(x2-3x+3) - 1

g) 27x3 + \(\dfrac{1}{8}\)

= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)

= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))

h) (x+y)3 - (x-y)3

= 2(3x2y) + 2y3

f) (x+y)2 - 4x2

= -3x2 + y(2x + y)

24 tháng 9 2018

h,f ?????

giải rõ hơn nha

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)