Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)
\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)
b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)
\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)
c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)
d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)
a)\(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(a-c\right)\)
b)\((a+b)(a^2-b^2)+(b+c)(b^2-c^2)+(c+a)(c^2-a^2)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
c)\(a^2b^2(a-b)+b^2c^2(b-c)+c^2a^2(c-a)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+bc+ca\right)\)
d)\(a^4(b-c)+b^4(c-a)+c^4(a-b)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
a)\(x^4+64=x^4+16x^2+64-16x^2\)
\(=\left(x^2\right)^2+2.x^2.8+8^2-\left(4x\right)^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
b)\(4x^4+81=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2\right)^2+2.2x^2.9+9^2-\left(6x\right)^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)
c)\(x^4y^4+64=x^4y^4+16\left(xy\right)^2+64-16\left(xy\right)^2\)
\(=\left[\left(xy\right)^2\right]^2+2.\left(xy\right)^2.8+8^2-\left(8xy\right)^2\)
\(=\left[\left(xy\right)^2+8\right]^2-\left(8xy\right)^2\)
\(=\left[\left(xy\right)^2+8-8xy\right]\left[\left(xy\right)^2+8+8xy\right]\)
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=a^4\left(a+b-a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=-a^4\left(c-a\right)-a^4\left(a-b\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=\left(b^4-a^4\right)\left(c-a\right)+\left(c^4-a^4\right)\left(a-b\right)\)
\(=\left(b^2+a^2\right)\left(b^2-a^2\right)\left(c-a\right)+\left(c^2-a^2\right)\left(c^2+a^2\right)\left(a-b\right)\)
\(=\left(b^2+a^2\right)\left(b-a\right)\left(b+a\right)\left(c-a\right)+\left(c-a\right)\left(c+a\right)+\left(c^2+a^2\right)\left(a-b\right)\)
\(=\left(b-a\right)\left(c-a\right)[\left(b^2+a^2\right)\left(a+b\right)-\left(c+a\right)\left(c^2+a^2\right)]\)
\(=\left(b-a\right)\left(c-a\right)\left(ab^2+a^3+b^3+a^2b-c^3-ac^2-a^3-a^2c\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(ab^2+b^3+a^2b-c^3-ac^2-a^2c\right)\)
\(=\left(b-a\right)\left(c-a\right)[\left(ab^2-ac^2\right)+\left(a^2b-a^2c\right)+\left(b^3+c^3\right)]\)
\(=\left(b-a\right)\left(c-a\right)[a\left(b^2-c^2\right)+a^2\left(b-c\right)+\left(b-c\right)\left(b^2+bc+c^2\right)]\)
\(=\left(b-a\right)\left(c-a\right)\left(b-c\right)\left(ab+ac+a^2+b^2+c^2+bc\right)\)