Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, 3x2y - 6xy = 3xy ( x - 2 )
b, x2 - y2 - 9x + 9y
= ( x2 - y2 ) - ( 9x - 9y )
= ( x - y )( x + y ) - 9 ( x - y )
= ( x - y )( x + y - 9 )
c, x3 - 6x2 - y2x + 9x
= x ( x2 - 6x - y2 + 9 )
= x [ ( x2 - 6x + 9 ) - y2 ]
= x [ ( x - 3 )2 - y2 ]
= x ( x - 3 - y )( x - 3 + y )
3x2y - 6xy = 3xy( x - 2 )
x2 - y2 - 9x + 9y = ( x - y )( x + y ) - 9( x - y ) = ( x - y )( x + y - 9 )
x3 - 6x2 - y2x + 9x = x( x2 - 6x - y2 + 9 ) = x[ ( x - 3 )2 - y2 ] = x( x - y - 3 )( x + y - 3 )
\(3x^2-8x+4\)
\(=3x^2-6x-2x+4\)
\(=\left(3x^2-6x\right)-\left(2x-4\right)\)
\(=3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(3x-2\right)\left(x-2\right)\)
a) \(3x^2-8x-4\)
\(=3x^2-6x-2x+4\)
\(=3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b) \(4x^4+81\)
\(=x^4+81+18x^2-18x^2\)
\(=\left[\left(x^2\right)^2+2x^2.9+9^2\right]-18x^2\)
\(=\left(x^2+9\right)^2-(\sqrt{18}x^2)\)
\(=\left(x^2+9-\sqrt{18}x\right)\left(x^2+9+\sqrt{18}x\right)\)
\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)
\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)
\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)
\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)
\(=\frac{12x^2}{x-1}\)
Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương
Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.
Trả lời:
a) x2 + 4y2 + 4xy = x2 + 2.x.2y + (2y)2 = ( x + 2y )2
b) \(\frac{1}{64}-27x^3=\left(\frac{1}{4}\right)^3-\left(3x\right)^3=\left(\frac{1}{4}-3x\right)\left(\frac{1}{16}+\frac{3}{4}x+9x^2\right)\)
c) x3 - 6x2 + 12x - 8 = x3 - 3.x2.2 + 3.x.22 - 23 = ( x - 2 )3
d) x2 - x - y2 - y = ( x2 - y2 ) - ( x + y ) = ( x - y )( x + y ) - ( x + y ) = ( x + y )( x - y - 1 )
e) 5x - 5y + ax - ay = ( 5x - 5y ) + ( ax - ay ) = 5 ( x - y ) + a ( x - y ) = ( x - y )( 5 + a )
g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
\(\Leftrightarrow ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(\Leftrightarrow a\left(b^2-c^2-ab+ac\right)+bc^2-b^2c\)
\(\Leftrightarrow a[\left(b-c\right)\left(b+c\right)-a\left(b-c\right)]-bc\left(b-c\right)\)
\(\Leftrightarrow a\left(b-c\right)\left(b+c-a\right)-bc\left(b-c\right)\)
\(\Leftrightarrow\left(b-c\right)\left(ab+ac-a^2-bc\right)\)
\(\Leftrightarrow\left(b-c\right)[a\left(b-a\right)-c\left(b-a\right)]\)
\(\Leftrightarrow\left(b-c\right)\left(a-c\right)\left(b-a\right)\)
Lời giải:
a. $3x^2-9x=3x(x-3)$
b. $4x^2+7y-4xy-7x=(4x^2-4xy)-(7x-7y)=4x(x-y)-7(x-y)=(x-y)(4x-7)$