a) Tìm số a để đa thức 3x3 + 2x2 – 7x + a  chia hết cho đa thức...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

=>x^4-x^3+5x^2+x^2-x+5+n-5 chia hết cho x^2-x+5

=>n-5=0

=>n=5

16 tháng 12 2020

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

11 tháng 12 2022

Bài 1:

a: \(=\dfrac{3x+5-5}{2x}=\dfrac{3x}{2x}=\dfrac{3}{2}\)

b: \(=\dfrac{2x}{x+3}\cdot\dfrac{\left(x+3\right)\left(x-3\right)}{x}=2\left(x-3\right)\)

Bài 2:

=>x^3+x+2x^2+2+a-2 chia hết cho x^2+1

=>a-2=0

=>a=2

17 tháng 10 2017

\(\left(x^3-3x^2+5x-a\right):\left(x-2\right)=x^2+x+7\)dư \(-a+14\)

Để\(\left(x^3-3^2+5x-a\right)⋮\left(x-2\right)\Rightarrow\)-a+14=0

                                                                            -a=0-14

                                                                            -a=-14=>a=14

Vậy a=14

24 tháng 12 2017

\(x^4-x^3+6x^2-x+n\)\(:\)\(x^2-x+5\)\(=x^2+1\)\(n-5\)

Để \(x^4-x^3+6x^2-x+n\) \(⋮\)\(x^2-x+5\) thì \(n-5=0\)hay \(n=5\)

AH
Akai Haruma
Giáo viên
24 tháng 10 2017

Bài 1:

Ta có: \(9(x-1)^2-4(2x+3)^2=(3x-3)^2-(4x+6)^2\)

\(=(3x-3-4x-6)(3x-3+4x+6)=-(x+9)(7x+3)\)

Bài 2:

Có: \(x^2-x+\frac{9}{20}=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{1}{5}=\left(x-\frac{1}{2}\right)^2+\frac{1}{5}\)

Ta thấy \(\left(x-\frac{1}{2}\right)^2\geq 0\forall x\in\mathbb{R}\Rightarrow x^2-x+\frac{9}{20}\geq \frac{1}{5}>0\forall x\in\mathbb{R}\)

Ta có đpcm.

Bài 3:

Thực hiện phân tích:

\(f(x)=x^3-8x^2+ax-5=x(x^2-3x+1)-5(x^2-3x+1)+ax-16x\)

\(=(x-5)(x^2-3x+1)+ax-16x\)

Thấy rằng bậc của \(ax-16x\) nhỏ hơn bậc của $g(x)$ nên $ax-16x$ là dư của $f(x)$ cho $g(x)$

Để \(f(x)\vdots g(x)\Rightarrow ax-16x=0\forall x\Rightarrow a=16\)

Bài 4:

Để \(\overline{2017x}\vdots 12\Leftrightarrow \left\{\begin{matrix} \overline{2017x}\vdots 3(1)\\ \overline{2017x}\vdots 4(2)\end{matrix}\right.\)

\((1)\Leftrightarrow 2+0+1+7+x\vdots 3\Leftrightarrow 10+x\vdots 3\Leftrightarrow x+1\vdots 3\)

\((2)\Leftrightarrow \overline{7x}\vdots 4\Rightarrow x\in\left\{2;6\right\}\)

Từ hai điều trên suy ra \(x=2\)

AH
Akai Haruma
Giáo viên
24 tháng 10 2017

Bài 5:

Ta có: \(x+\frac{1}{x}=\sqrt{2017}\Rightarrow \left(x+\frac{1}{x}\right)^2=2017\Leftrightarrow x^2+\frac{1}{x^2}+2=2017\)

\(\Leftrightarrow x^2+\frac{1}{x^2}=2015\)

Như vậy: \(A=3x^2-5+\frac{3}{x^2}=3\left(x^2+\frac{1}{x^2}\right)-5=3.2015-5=6040\)

Bài 6:

Đặt \(\left\{\begin{matrix} x+y+z=a\\ xy+yz+xz=b\end{matrix}\right.\). ĐKĐB tương đương với:

\(\left\{\begin{matrix} a^2-2b=3\\ a+b=6\rightarrow b=6-a\end{matrix}\right.\)

\(\Rightarrow a^2-2(6-a)=3\Leftrightarrow a^2-2a+15=0\Leftrightarrow (a+5)(a-3)=0\Leftrightarrow a=3\)

(do \(a\in\mathbb{R}^+\))

Kéo theo \(b=6-a=3\Rightarrow x^2+y^2+z^2=xy+yz+xz\)

Theo BĐT AM-GM thì \(x^2+y^2+z^2\geq xy+yz+xz\)

Dấu bằng xảy ra khi \(x=y=z\Rightarrow x=y=z=1\) do \(x+y+z=3\)