Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Tìm x:}\)
\(a.x\left(x-1\right)-3x+3x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
\(b.3x\left(x-2\right)+10-5x=0\)
\(3x^2-6x+10-5x=0\)
\(3x^2-11x+10=0\)
\(3x^2-11x=-10\)(bn xem lại đề nhé)
\(c.x^3-5x^2+x-5=0\)
\(x^3-5x^2+x=5\)
\(d.x^4-2x^3+10x^2-20x=0\)
bài 1:phân tích thành phân tử
a> x^2-6x-y^2+9
= (x-3)^2 -y^2
= (x-3 -y) (x-3+y)
b>x^2-xy-8x+8y
= x(x-y) - 8(x-y)
= (x-8) (x-y)
c>25-4x^2-4xy-y^2
= 5^2 - (2x + y)^2
= (5 - 2x -y) (5 +2x+y)
d>xy-xz-y+z
= x(y-z) - (y-z)
= (x-1) (y-z)
e>x^2-xz-yz+2xy+y^2
= (x+y)^2 - z(x+y)
= (x+y-z) (x+y)
g>x^2-4xy+4y^2-z^2-4zt-4t^2
= (x-2y)^2 - (z + 2t)^2
= (x-2y -x-2t) (x-2y + z +2t)
bài 2:tìm X bt
a>x.(x-1)-3x+3x=0
x (x-1) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x=0 và x=1
b>3x.(x-2)+10-5x=0
3x(x-2) - 5 (x-2)=0
(3x-5) (x-2) =0
\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)
c>x^3-5x^2+x-5=0
x^2 (x-5) + (x-5) =0
(x^2 +1)(x-5) =0
\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)
Vậy x=5
d>x^4-2x^3+10x^2-20x=0
x^3 (x-2) + 10x(x-2) =0
(x^3 + 10x) (x-2) =0
x(x^2 + 10) (x-2) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)
Vậy x=0 và x=2
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
a)\(\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\)
b)\(x^2-2y-1-2x+1-y^2=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left[\left(x-1\right)-\left(y+1\right)\right]\left[\left(x-1\right)+\left(y+1\right)\right]\)
\(=\left(x-y-2\right)\left(x+y\right)\)
c)\(x^2-y^2-2x-1=x^2-\left(y^2+2x+1\right)\)
\(=x^2-\left(y+1\right)^2\)
\(=\left(x^2-y-1\right)\left(x^2+y+1\right)\)
A. Ta có: (x - y)2 - 2(x - y)+1 = (x - y)2 - 2.(x - y).1 +12 = ( x - y - 1)2
B. Ta có: x2 - 2y -1 - 2x +1 -y2 = (x2 - y2) - (2x - 2y) -1+1 = (x - y)(x + y) - 2(x - y) = (x - y)(x + y - 2)
C. Ta có: x2 - y2 -2y -1 = x2 -(y2 - 2y -1) = x2 - ( y2 +2y1 + 1) = x2 - (y+1)2 = (x - y - 1)(x + y +1)
k cho mình nha bạn hihj!!! ~3~
Bạn khá hiểu bài rồi đó. Đúng hết 4 câu đầu luôn.
Bổ sung thêm vào câu 3 một chút (nối tiếp theo sau nhé):
\(\Rightarrow\left(m-n\right)\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)
Bổ xung thêm vào câu 4:
\(\Rightarrow\left(x-y\right)\left(2x-3y\right)\left(2x+3y\right)\)
Sửa lại câu 5:
\(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)
\(=-10x^2\left(2b-a\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)
\(=\left[-10x^2-\left(x^2+2\right)\right]\left(2b-a\right)^2\)
\(=\left(-10x^2-x^2-2\right)\left(2b-a\right)^2\)
\(=\left(-11x^2-2\right)\left(4b^2-4ab+a^2\right)\)
a)\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z-y^2x+z^2x+y^2z-z^2y\)
\(=x^2\left(y-z\right)-x\left(y^2-z^2\right)+yz\left(y-z\right)\)
\(=x^2\left(y-z\right)-x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\)
\(=\left(y-z\right)\left(x^2-x\left(y+z\right)+yz\right)\)
\(=\left(y-z\right)\left(x^2-xy-xz+yz\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
đăng 1 lần thôi là người ta thấy rồi, ai biết ng` ta sẽ giúp ko biết thì thôi mắc gì đăng lắm thế đè hết câu người khác xuống
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
a) 10x + 15y = 5(2x + 3y)
b) x2 - 2xy - 4 + y2
= (x2 - 2xy + y2) - 4
= (x - y)2 - 22
= (x - y + 2)(x - y - 2)
c) x(x + y) - 3x - 3y
= x(x + y) -3(x + y)
= (x - 3)(x + y)
a, \(10x+15y=5\left(2x+3y\right)\)
b, \(x^2-2xy-4+y^2=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
c, \(x\left(x+y\right)-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\)