K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

Ta có:x(3x2+4x-7)=x[(3x2-3x)+(7x-7)]=x[3x(x-1)+7(x-1)]=x(x-1)(3x+7)

1 tháng 8 2021

thank you!

 

23 tháng 8 2017

\(4x^3-13x^2+9x-18=4x^3-12x^2-x^2+3x+6x-18\)

\(=4x^2.\left(x-3\right)-x\left(x-3\right)+3.\left(x-3\right)=\left(x-3\right)\left(4x^2-x+3\right)\)

3 tháng 9 2018

\(4x^3-13x^2+9x-18\)

\(=4x^3-12x^2-x^2+3x+6x-18\)

\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)

\(=\left(x-3\right)\left(4x^2-x+6\right)\)

1 tháng 11 2015

a) x3 - 7x - 6 = x3 + x2 - x2 - x - 6x - 6

= x2(x + 1) - x(x + 1) - 6(x + 1)

= (x + 1)(x2 - x - 6)

= (x + 1)(x2 + 2x - 3x - 6)

= (x + 1)[x(x + 2) - 3(x + 2)]

= (x + 1)(x + 2)(x - 3)

30 tháng 10 2015

\(4x^3-7x^2+3x\)

\(=4x^3-4x^2-3x^2+3x\)

\(=4x^2\left(x-1\right)-3x\left(x-1\right)\)

\(=\left(x-1\right)\left(4x^2-3x\right)=x\left(x-1\right)\left(4x-3\right)\)

 

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15\)

\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)-15\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+4+2\right)-15\)

\(=\left(x^2-5x+4\right)^2+2\left(x^2-5x+4\right)+1-16\)

\(=\left(x^2-5x+4+1\right)^2-4^2\)

\(=\left(x^2-4x+4+1-4\right)\left(x^2-4x+4+1+4\right)\)

\(=\left(x^2-4x+1\right)\left(x^2-4x+9\right)\)

31 tháng 10 2017

b) \(x^3-4x^2y+4xy^2-y^3\)

\(=x^3-3x^2y-x^2y+3xy^2+xy^2-y^3\)

\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2y-xy^2\right)\)

\(=\left(x-y\right)^3-xy\left(x-y\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)^2-xy\right]\)

\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)

\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)

21 tháng 8 2021

Phân tích đa thức thành nhân tử(tách hạng tử)
1)x^2+2x-3=x^2-x+3x-3=x(x-1)+3(x-1)=(x-1)(x+3)
2)x^2-5x+6=x^2-2x-3x+6=x(x-2)-3(x-2)=(x-2)(x-3)
3)x^2+7x+12=(x+3)(x+4)
4)x^2-x-12=(x-4)(x+3)
5)3x^2+3x-36=3[(x-3)(x+4)]
6)5x^2-5x-10=5[(x-2)(x+1) ]       
7)3x^2-7x-6=(x-3)(3x+2)
8)4x^2+4x-3=4x^2+6x-2x-3=(2x-1)(2x+3)
9)8x^2-2x-3=8x^2+4x-6x-3=(4x-3)(2x+1)
 

1: \(x^2+2x-3=\left(x+3\right)\left(x-1\right)\)

2: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

3: \(x^2+7x^2+12x=4x\left(2x+3\right)\)

4: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)

5: \(3x^2+3x-36=3\left(x^2+x-12\right)=3\left(x+4\right)\left(x-3\right)\)

6: \(5x^2-5x-10=5\left(x^2-x-2\right)=5\left(x-2\right)\left(x+1\right)\)

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

\(4x^4-8x^3+4x^3-8x^2+x^2-2x-2x+4\\ =4x^3\left(x-2\right)+4x^2\left(x-2\right)+x\left(x-2\right)-2\left(x-2\right)\\ =\left(x-2\right)\left(4x^3+4x^2+x-2\right)\\ =\left(x-2\right)\left(4x^3-2x^2+6x^2-3x+4x-2\right)\\ =\left(x-2\right)\left[2x^2\left(2x-1\right)+3x\left(2x-1\right)+2\left(2x-1\right)\right]\\ =\left(x-2\right)\left(2x-1\right)\left(2x^2+3x-2\right)\)

19 tháng 6 2019

\(b,x^3-3x^2-4x+12\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-4\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(c,3x^3-7x^2+17x-5\)

\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)

\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)

19 tháng 6 2019

\(\text{d) 2x}^4- 7x^3 - 2x^2 + 13x + 6\)
\(\text{= (2x^4 + 2x^3) - (9x^3 + 9x^2) + (7x^2 + 7x) + (6x + 6)}\)
\(\text{= 2x^3(x + 1) - 9x^2(x + 1) + 7x(x + 1) + 6(x + 1)}\)
\(\text{= (x + 1)(2x^3 - 9x^2 + 7x + 6)}\)
\(\text{= (x + 1)(2x + 1)(x - 3)(x - 2)}\)

4 tháng 3 2021

a) \(4x^4+4x^3+5x^2+2x+1\)

\(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)

=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)

Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)

Thay vào (1), ta có:

\(x^2\left(a^2-4+2a+5\right)\)

=\(x^2\left(a^2+2a+1\right)\)

=\(x^2\left(a+1\right)^2\)

=\(\left[x\left(a+1\right)\right]^2\)

=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)

=\(\left(2x^2+1+x\right)^2\)

\(=\left(2x^2+x+1\right)^2\)

3 tháng 3 2021

a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1

Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1

<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)

Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2

b) 3x4 + 11x3 - 7x2 - 2x + 1

= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1

= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )

= ( 3x - 1 )( x3 + 4x2 - x - 1 )