\(3x^3-14x^2+4x+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2024

\(3x^3-14x^2+4x+3\)

\(=\left(3x^3-15x^2+9x\right)+\left(x^2-5x+3\right)\)

\(=3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)\)

\(=\left(3x+1\right)\left(x^2-5x+3\right)\)

21 tháng 7 2017

Ta có : 5x2 + 14x - 3

= 5x2 + 15x - x - 3

= (5x2 + 15x) - (x + 3)

= 5x(x + 3) - (x + 3)

= (x + 3)(5x - 1)

21 tháng 7 2017

Phân tích đa thức thành nhân tử 5x2+14x−3

Theo đề bài ta có:

\(5x^2+14x-3\)

\(\Leftrightarrow5x^2+15x-x-3\)

\(\Leftrightarrow\left(5x^2+15x\right)-\left(x-3\right)\)

\(\Leftrightarrow5x\left(x-3\right)-\left(x+3\right)\)

\(\Leftrightarrow\left(3x\right)\left(5x-1\right)\)

2 tháng 10 2018

dễ mak

2 tháng 10 2018

nếu dễ thì trả lời hộ đi

18 tháng 2 2017

\(4x^4+2x^3-8x^2+3x+9\)

\(=4x^4+4x^3-2x^3-2x^2-6x^2-6x+9x+9\)

\(=\left(x+1\right)\left(4x^3-2x^2-6x+9\right)\)

\(=\left(x+1\right)\left(4x^3+6x^2-8x^2-12x+6x+9\right)\)

\(=\left(x+1\right)\left(2x+3\right)\left(2x^2-4x+3\right)\)

11 tháng 12 2018

\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)

\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

Tham khảo nhé~

3 tháng 2 2019

\(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right)\left(x^2+4x-3x-12\right)\)

\(=\left(x-2\right)\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

3 tháng 2 2019

Ta có:\(x^3-x^2-14x+24=\left(x^3-2x^2\right)+\left(x^2-2x\right)-\left(12x-24\right)\)

                                                    \(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

                                                    \(=\left(x-2\right)\left(x^2+x-12\right)\)

                                                    \(=\left(x-2\right)\left(x^2-3x+4x-12\right)\)

                                                    \(=\left(x-2\right)\left[x\left(x-3\right)+4\left(x-3\right)\right]\)

                                                    \(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

2 tháng 7 2017

=x3(x+2)-13x2+12x-26x+24

=x3(x+2)-x(13x-12)-2(13x-12)

=x3(x+2)-(13x-12)(x+2)

=(x+2)(x3-x-12x+12)

(x+2)[(x2-1)-12(x-1)]

=(x+2)[x(x-1)(x+1)-12(x-1)]

=(x+2)(x-1)[x(x+1)-12]

=(x+2)(x-1)(x2+x-12)

=(x+2)(x-1)(x2-3x+4x-12)

=(x+2)(x-1)[x(x-3)+4(x+3)]

=(x+2)(x-1)(x-3)(x+4)

2 tháng 7 2017

trong bài làm của mk có hàng k có dấu "=" chỗ đó có dâu"=" nha!

19 tháng 10 2016

a) \(x^3-3x+1-3x^2=\left(x^3+1\right)-\left(3x^2+3x\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)

b) \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1+y\right)\left(x+1-y\right)\)

19 tháng 10 2016

bạn ơi giúp mink 1 câu nữa nhé

 

10 tháng 10 2017

KO LÀM ĐC

10 tháng 10 2017

vào cốc cốc math cứ thế ấn, nó sẽ ra nghiệm

4 tháng 3 2021

a) \(4x^4+4x^3+5x^2+2x+1\)

\(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)

=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)

Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)

Thay vào (1), ta có:

\(x^2\left(a^2-4+2a+5\right)\)

=\(x^2\left(a^2+2a+1\right)\)

=\(x^2\left(a+1\right)^2\)

=\(\left[x\left(a+1\right)\right]^2\)

=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)

=\(\left(2x^2+1+x\right)^2\)

\(=\left(2x^2+x+1\right)^2\)

3 tháng 3 2021

a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1

Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1

<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)

Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2

b) 3x4 + 11x3 - 7x2 - 2x + 1

= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1

= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )

= ( 3x - 1 )( x3 + 4x2 - x - 1 )

26 tháng 9 2018

      \(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)

\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

      \(x^4+x^3+2x-4\)

\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)

\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)

\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)

      \(8x^4-2x^3-3x^2-2x-1\)

\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)

\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)

\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)

\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)

\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)

\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)

      \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

Chúc bạn học tốt.