Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử:
1. x2 - 5x - 6
\(=x^2-6x+x-6\)
\(=\left(x^2-6x\right)+\left(x-6\right)\)
\(=x\left(x-6\right)+\left(x-6\right)\)
\(=\left(x+1\right)\left(x-6\right)\)
3. 1 + 3x + 2x2
\(=1+2x+x+2x^2\)
\(=\left(1+2x\right)+\left(x+2x^2\right)\)
\(=\left(1+2x\right)+x\left(1+2x\right)\)
\(=\left(1+2x\right)+\left(x+1\right)\)
4. 6 - 2x - 8x2
\(=6-8x+6x-8x^2\)
\(=\left(6+6x\right)-\left(8x+8x^2\right)\)
\(=6\left(1+x\right)-8x\left(1+x\right)\)
\(=\left(6-8x\right)\left(1+x\right)\)
5. 7 - 4x - 3x2
\(=7-7x+3x-3x^2\)
\(=\left(7-7x\right)+\left(3x-3x^2\right)\)
\(=7\left(1-x\right)+3x\left(1-x\right)\)
\(=\left(7+3x\right)\left(1-x\right)\)
1) \(x^2-5x-6\\ =x^2+x-6x-6\\ =x\left(x+1\right)-6\left(x+1\right)\\ =\left(x-6\right)\left(x+1\right)\)
3) \(1+3x+2x^2\\ =2x^2+2x+x+1\\ =2x\left(x+1\right)+\left(x+1\right)\\ =\left(x+1\right)\left(2x+1\right)\)
1) \(x^2-8x+7=0\)
\(\Leftrightarrow x^2-7x-x+7=0\)
\(\Leftrightarrow\left(x^2-7x\right)-\left(x-7\right)=0\)
\(\Leftrightarrow x\left(x-7\right)-\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)
2) \(5x^2-11x+6=0\)
\(\Leftrightarrow5x^2-5x-6x+6=0\)
\(\Leftrightarrow\left(5x^2-5x\right)-\left(6x-6\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=1\end{matrix}\right.\)
3) \(2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
4) \(x^2+7x-8=0\)
\(\Leftrightarrow x^2+8x-x-8=0\)
\(\Leftrightarrow\left(x^2+8x\right)-\left(x+8\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)
5) \(3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\)
1. \(x^2+3x+2=x^2+2x+x+2=x\left(x+2\right)+\left(x+2\right)=\left(x+2\right)\left(x+1\right)\)
2.
\(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(3x-1\right)\)3 và 4 bạn xem lại đề nha mik giải ko đc
5. \(x^2+2x-8=x^2+4x-2x-8=x\left(x+4\right)-2\left(x+4\right)=\left(x+4\right)\left(x-2\right)\)
a) \(A=\left(x^3+x^2\right)-\left(x+1\right)=x\left(x+1\right)-\left(x+1\right)=\left(x-1\right)\left(x+1\right)\)
b) \(B=\left(x^3-3x^2\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
1) 4x2 + 5x - 6 = 4x2 + 8x - 3x - 6 = 4x( x + 2 ) - 3( x + 2 ) = ( x + 2 )( 4x - 3 )
2) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )
3) 2x2 + 3x - 27 = 2x2 - 6x + 9x - 27 = 2x( x - 3 ) + 9( x - 3 ) = ( x - 3 )( 2x + 9 ) < đã sửa ._. >
4) 7x2 + 3xy - 10y2 = 7x2 - 7xy + 10xy - 10y2 = 7x( x - y ) + 10y( x - y ) = ( x - y )( 7x + 10y )
5) x2 + 5x - 2 < sai đề ._. >
6) x8 + x7 + 1 = x8 + x7 + x6 - x6 + 1
= ( x8 + x7 + x6 ) - ( x6 - 1 )
= x6( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x6( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )[ x6 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
Ta có : x2 - 2x - 3
= x2 - 3x + x - 3
= x(x - 3) + (x - 3)
= (x + 1)(x - 3)
x2 + 4x + 3
= x2 + 3x + x + 3
= x(x + 3) + (x + 3)
= (x + 1)(x + 3)
2x2 + 3x - 5
= 2x2 - 2x + 5x - 5
= 2x(x - 1) + 5(x - 1)
= (2x + 5)(x - 1)
Dùng phương pháp tách:
a) \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)
b) \(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
c) \(2x^2+3x-5=2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
Câu d, e, f tương tự.
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
1)x2-3x+2
=x2-x-2x+2
=x(x-1)-2(x-1)
=(x-1)(x-2)
2)2x2+5x-7
=2x2-2x+7x-7
=2x(x-1)+7(x-1)
=(x-1)(2x+7)
3)x2+7x-8
=x2-x+8x-8
=x(x-1)+8(x-1)
=(x-1)(x+8)
4)x2+8x+7
=x2+x+7x+7
=x(x+1)+7(x+1)
=(x+1)(x+7)
5)2x2-5x-7
=2x2+2x-7x-7
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
xong rồi !!