Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
a) \(x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(=\left(x+3\right)\left(x+3\right)\)
b) \(10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(=-\left(x-5\right)\left(x-5\right)\)
c) \(8x^3-\frac{1}{8}\)
\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)
\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
d) \(\frac{1}{25}x^2-64y^2\)
\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)
\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)
a) \(x^2+6x+9=x^2+2.3.x+3^2\)\(=\left(x+3\right)^2\)
b)\(10x-25-x^2=-\left(x^2-10x+25\right)\)\(=-\left(x^2-2.5.x+5^2\right)=-\left(x+5\right)^2\)
c)\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)\(=\left(2x-\frac{1}{2}\right)\left(4x+x+\frac{1}{4}\right)\)
d)\(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}\right)^2-\left(8y\right)^2\)\(=\left(\frac{1}{5}-8y\right)\left(\frac{1}{5}+8y\right)\)
\(x^2-y^2+6x+9=\left(x+3\right)^2-y^2=\left(x+3+y\right)\left(x+3-y\right)\)
\(x^3+3x^2-9x-27=\left(x-3\right)\left(x^2+3x+9\right)+3x\left(x-3\right)=\left(x-3\right)\left(x^2+6x+9\right)=\left(x-3\right)\left(x+3\right)^2\)
a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)
\(=x^4-2x^3+6x^2-8x+8=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)
b)\(x^4+6x^3+7x^2-6x+1=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2.x^2.3x\)+2.3x.(-1)+2.x2.(-1)
\(=\left(x^2+3x-1\right)^2\)
Phân tích các đa thức sau thành nhân tử
a) \(a^2b^4+a^3b-abc\)
b) \(-x^2y^2z-6x^3y-8x^4z^2-9^5y^5z^5\)
- 3x2 + (x2 - 6x + 9)
= (x - 3)2 - 3x2 = (x - 3 - \(\sqrt{3}x\))(x - 3 + \(\sqrt{3}x\))
a) (x2-4x+3)(x2-10x+24)+8=((x2-x)-(3x-3))((x2-6x)-(4x-24))+8
=(x(x-1)-3(x-1))(x(x-6)-4(x-6))+8=(x-1)(x-3)(x-4)(x-6)+8=((x-1)(x-6))(x-3)(x-4))+8
=(x2-7x+6)(x2-7x+12)+8
Đặt x2-7x+6=a
Ta có : a(a+6)+8=a2+6a+8=(a+2)(a+4)=(x2-7x+8)(x2-7x+10)=(x2-7x+8)(x-5)(x-2)
b) Tương tự như câu a kết quả là (x-3)(x3+9x2+21x+9)
c) x4+x3+6x2+3x+9=(x4+x3+3x2)+(3x2+3x+9)=x2(x2+x+3)+3(x2+x+3)=(x2+x+3)(x2+2)
a) \(x^{12}-3x^6+1\)
\(=\left(x^6\right)^2-2\cdot x^6\cdot1+1^2-x^6\)
\(=\left(x^6-1\right)^2-\left(x^3\right)^2\)
\(=\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)
\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)
\(=\left(x^2\right)^2+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x-1\right)^2\)
\(49-x^2+6x-9\)
\(=7^2-\left(x^2+2.x.3+3^2\right)\)
\(=7^2-\left(x+3\right)^2\)
\(=\left(7-x-3\right)\left(7+x+3\right)\)
\(=\left(4-x\right)\left(10+x\right)\)
b) \(49y^2-x^2+6x-9\)
\(=49y^2-\left(x^2-6x+9\right)\)
\(=\left(7y\right)^2-\left(x-3\right)^2\)
\(=\left(7y-x+3\right)\left(7y+x-3\right)\)
a) \(a^2-9+6x-x^2\)
\(=a^2-\left(9-6x+x^2\right)\)
\(=a^2-\left(x-3\right)^2\)
\(=\left(a-x+3\right)\left(a+x-3\right)\)