Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nham nghiem thi ta thay pt co 1 ngiem x=2/3
=> tach nhu sau :
\(3x^3-2x^2-3x^2+2x+3x-2\)
\(3x^2\left(x-\frac{2}{3}\right)-3x\left(x-\frac{2}{3}\right)+3\left(x-\frac{2}{3}\right)\)
\(\left(x-\frac{2}{3}\right)\left(3x^2-3x+3\right)\)
Chuc ban hoc tot
\(x^4-6x^3+12x^2-14x+3\)
= \(x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3\)
= \(x^2\left(x^2-4x+1\right)-2x\left(x^2-4x+1\right)+3\left(x^2-4x+1\right)\)
= \(\left(x^2-4x+1\right)\left(x^2-2x+3\right)\)
Đặt x+5 = a ; x-4 = b
=> 2x+1 = a+b
pt <=> a^4+b^4=(a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^+b^4
<=> 4a^3b+6a^2b^2+4ab^3 = 0
<=> 2a^3b+3a^2b^2+3ab^3 = 0
<=> ab.(2a^2+3ab+2b^2) = 0
<=> ab=0 ( vì 2a^2+3ab+b^2 > 0 )
<=> a=0 hoặc b=0
<=> x+5=0 hoặc x-4=0
<=> x=-5 hoặc x=4
Vậ y ............
Tk mk nha
Bạn xem lại đề đi , đề này sai rùi ko phân tích đa thức thành nhân tử được đâu
có 2 cách một là nhóm hạng tử hai là phương pháp hệ số bất định. tại nhiều bạn làm cách nhóm quá nên mình làm hệ số bất định nhé
x4 - 6x3 - 12x2 - 14x + 3
= (x2 + ax + b)(x2 + cx + d)
Tìm a, b, c, d thuộc Z
ta có (x2 + ax + b)(x2 + cx + d)
= x4 + cx3 + dx2 + ax3 + acx2 + axd + bx2 + bcx + bd
= x4 + (a + c)x3 + (b + d + ac)x2 + (ad+bc)x + bd
Đồng nhất hệ số ta có:
a + c = -6
b + d + ac = 12
ad + bc = -14
bd = 3
Nếu b = 1, d = 3, ta có \(\hept{\begin{cases}a+c=-6\\1+3+ac=-12\\3a+c=-14\end{cases}}\) => \(\hept{\begin{cases}a=-4\\c=-2\\4+\left(-4\right)\left(-2\right)=12\end{cases}}\)
=> a = -4, b=1, d=3, c = -2
vậy x4 - 6x3 + 12x2 - 14x + 3 = (x2 - 4x + 1)(x2 - 2x + 3)
a: \(12x^3-6x^2+3x\)
\(=3x\cdot4x^2-3x\cdot2x+3x\cdot1\)
\(=3x\left(4x^2-2x+1\right)\)
b: \(\dfrac{2}{5}x^2+5x^3+x^2y\)
\(=x^2\cdot\dfrac{2}{5}+x^2\cdot5x+x^2\cdot y\)
\(=x^2\left(\dfrac{2}{5}+5x+y\right)\)
c: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
\(A=3x^2-14x^2+4x+3\)
Giả sử:
\(A=\left(3x+a\right)\left(x^2+bx+c\right)\)
\(=3x^3+3bx^2+3cx+ax^{2\:}+abx+ac\)
\(=3x^3+\left(3b+a\right)x^2+\left(3c+ab\right)x+ac\)
Ta có:
\(\begin{cases}3b+a=-14\\3c+ab=4\\ac=3\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=-5\\c=3\end{cases}\)
Vậy \(A=\left(3x+1\right)\left(x^2-5x+3\right)\)
= \(5x^3-2x^2-10x^2+4x+10x-4\)
= \(5x^2\left(x-\frac{2}{5}\right)-10x\left(x-\frac{2}{5}\right)+10\left(x-\frac{2}{5}\right)\)
=\(\left(x-\frac{2}{5}\right)\left(5x^2-10x+10\right)\)
Chuc ban hoc tot!