![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4-2\right)^2-x^4\)
\(=\left(x^4-x^2-2\right)\left(x^4-x^2-2x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-2\right)\left(x^2+1\right)\left(x^2+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^4+3x^3-7x^2-6x+8\)
\(=2x^4+5x^3-2x^2-8x-2x^3-5x^2+2x+8\)
\(=x\left(2x^3+5x^2-2x-8\right)-\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+x^2-4x+4x^2+2x-8\right)\)
\(=\left(x-1\right)\left[x\left(2x^2+x-4\right)+2\left(2x^2+x-4\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(2x^2+x-4\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^8+3x^4+1\)
\(=\left(x^4\right)^2+2x^4.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)
\(=\left(x^4+\frac{3}{2}\right)^2-\left(\sqrt{\frac{5}{4}}\right)^2\)
\(=\left(x^4+\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\left(x^4+\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\)
Nhận lời thách đố
\(=x^8+\frac{6}{2}x^4+1\)
\(=x^8+\frac{3+\sqrt{5}+3-\sqrt{5}}{2}x^4+\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}\)
\(=x^8+\frac{x^4.\left(3+\sqrt{5}\right)}{2}+\frac{x^4\left(3-\sqrt{5}\right)}{2}+\left(\frac{3+\sqrt{5}}{2}\right)\left(\frac{3-\sqrt{5}}{2}\right)\)
\(=x^4\left(x^4+\frac{3+\sqrt{5}}{2}\right)+\frac{3-\sqrt{5}}{2}\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)
\(=\left(x^4+\frac{3-\sqrt{5}}{2}\right)\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)
Nếu thấy đúng nhớ tk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)
Phân tích đa thức thành nhân tử
x3+3x2y−9xy2+5y2
x8y8+x4y4+1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4+3x^2-4\)
\(=x^4+4x^2-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x^2-1\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
Chúc bạn học tốt.
![](https://rs.olm.vn/images/avt/0.png?1311)
=X4-3X3 +6X3-18X2+11X2-33X+6X-18
=(X-3)(X3+6X2+11X+6)
=(X-3)(X+3)(X+1)(X+2)
\(x^4+3x^3-7x^2-27x-18.\)
\(=\left(x^4-9x^2\right)+\left(3x^3-27x\right)+\left(2x^2-18\right)\)
\(=x^2\left(x-3\right)\left(x+3\right)+3x\left(x-3\right)\left(x+3\right)+2\left(x-3\right)\left(x+3\right).\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x+1\right)\left(x+2\right).\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x\(x^4+3x^4+4=\left(x^2\right)^2+2x^2\times\frac{3}{2}+\frac{9}{4}\)
x8 + 3x4 + 4
= ( x8 + 4x4 + 4 ) - x4
= ( x4 + 2 )2 - ( x2 )2
= ( x4 - x2 + 2 )( x4 + x2 + 2 )
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4-2\right)^2-x^4\)
\(=\left(x^4-x^2-2\right)\left(x^4+x^2-2\right)\)
\(=\left(x^4-2x^2+x^2-2\right)\left(x^4+2x^2-x^2-2\right)\)
\(=\left(x^2\left(x^2-2\right)+x^2-2\right)\left(x^2\left(x^2+2\right)-\left(x^2+2\right)\right)\)
\(=\left(x^2+1\right)\left(x^2-2\right)\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^2-2\right)\left(x^2+2\right)\)