Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
1.
\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x+4}{x-3}\)
b.
\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)
\(\Rightarrow x=10\) (thỏa mãn)
2.
\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)
\(x^3-3x^2+6x-4\)
\(=x^3-2x^2+4x-x^2+2x-4\)
\(=\left(x^3-2x^2+4x\right)-\left(x^2-2x+4\right)\)
\(=x\left(x^2-2x+4\right)-\left(x^2-2x+4\right)\)
\(=\left(x-1\right)\left(x^2-2x+4\right)\)
x^3 - 3x^2 + 6x - 4
<=> x^3-3x^2+3x-1+3x-3
<=>(x-1)^3+3(x-1)
<=>(x-1)+((x-1)^2+3)
<=>(x-1)+(x^2-2x+4)
a) \(x^2-3x=x\left(x-3\right)\)
b) \(10x\left(x-y\right)-8y\left(x-y\right)=2\left(x-y\right)\left(5x-4y\right)\)
c) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
\(x^4-3x^3-x+3\)
\(=x^4-x^3-2x^3+2x-3x+3\)
\(=\)\(x^3\left(x-1\right)-2x\left(x^2-1\right)-3\left(x-1\right)\)
\(=x^3\left(x-1\right)-2x\left(x-1\right)\left(x+1\right)-3\left(x-1\right)\)
\(=\left[x^3-2x\left(x+1\right)-3\right]\left(x-1\right)\)
\(=\left[x^3-2x^2-2x-3\right]\left(x-1\right)\)
\(=\)\(\left[x^3-3x^2+x^2-3x+x-3\right]\left(x-1\right)\)
\(=\left[x^2\left(x-3\right)+x\left(x-3\right)+\left(x-3\right)\right]\left(x-1\right)\)
\(=\left[\left(x-3\right)\left(x^2+x+1\right)\right]\left(x-1\right)\)
=\(\left(3x^2-4x-13-4x^2+9\right)\left(3x^2-4x-13+4x^2-9\right)-\left(x+2\right)^4\)
=\(\left(-x^2-4x-4\right)\left(7x^2-4x-22\right)-\)\(\left(x+2\right)^{^{ }2.2}\)
=\(-\left(x+2\right)^2\left(7x^2-4x-22\right)-\left(x+2\right)^2\left(x+2\right)^2\)
=\(-\left(x+2\right)^2\)\(\left(7x^2-4x-22-x^2-4x-4\right)\)
\(-\left(x+2\right)^2\)(\(6x^2-8x-26\))
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: \(=3\left(x^2-y^2-x+y\right)\)
\(=3\left[\left(x-y\right)\left(x+y\right)-\left(x-y\right)\right]\)
=3(x-y)(x+y-1)
b: =(x-4)(x+1)
c: =x(x-1)
`a)3x-3a+yx-ya`
`=3(x-a)+y(x-a)`
`=(x-a)(y+3)`
`b)x^2-9-4(x+3)`
`=(x-3)(x+3)-4(x+3)`
`=(x+3)(x-3-4)`
`=(x+3)(x-7)`
a) \(=3x+yx-\left(3a+ya\right)\) \(=x\left(3+y\right)-a\left(3+y\right)\) \(=\left(3+y\right)\left(x-a\right)\)
b) \(=\left(x-3\right)\left(x+3\right)-4\left(x+3\right)\) \(=\left(x+3\right)\left(x-3-4\right)\) \(=\left(x+3\right)\left(x-7\right)\)