Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
TL:
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)\left(2x+1-x+1\right)\)
\(=3x.\left(x+2\right)\)
\(64-27x^3=4^3-\left(3x\right)^3=\left(4-3x\right)\left(16+12x+9x^2\right)\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
a) 9 -(x-y)2
= 32 - (x-y)2
= (3-x+y).(3+x-y)
b) (x2 +4)2 - 16x2
= (x2+4)2 - (4x)2
= (x2 + 4 -4x).(x2 + 4 +4x)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
\(6x-9-x^2\)
\(=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
\(=-1.\left(x-3\right)^2\)
b ) \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=2x.2\left(2x+1\right)\)
\(=4x\left(2x+1\right)\)
Sao chẳng ai T z
Ta có:\(TH1:\left(3x+1\right)^2-\left(1-2x\right)^2=\left(3x+1+1-2x\right)\left(3x+1-1+2x\right)=\left(x+2\right)\left(5x\right)\)
Còn ra hằng đẳng thức thì mk chịu