K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

\(g,8x^3-27y^3=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)

\(h,x^3+y^3+2x^2-2xy+2y^2\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)\)

\(=\left(x^2-xy+y^2\right)\left(x+y+2\right)\)

21 tháng 7 2018

\(8x^3-36x^2y+54xy^2-27y^3\)

\(=\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y\right)^3\)

\(=\left(2x-3y\right)^3\)

21 tháng 7 2018

\(8x^3-36x^2y+54xy^2-27y^3\)

\(=\left(2x\right)^3-3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2-\left(3y^3\right)\)

\(=\left(2x-3y\right)^3\)

Bài trên là hằng đẳng thức:

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

1 tháng 8 2021

a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

\(=2\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(2-x+y\right)\)

1 tháng 8 2021

b) \(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)

\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)

15 tháng 7 2016

a) xy+3x-7y-21

=x(y+3)-7(x+3)

=(x-7)(y+3)

b)2xy-15-6x-5y

=2x(y-3)-5(-3+y)

=(2x-5)(y-3)

c)2x^2y+2xy^2-2x-2y

=2x(xy-1)+2y(xy-1)

=(2x+2y)(xy-1)

x(x+3)-5x(x-5)-5(x+3)

=(x-5)(x+3)-5x(x-5)

=(x-5)(x+3-5x)

15 tháng 7 2016

Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn

26 tháng 7 2018

g) 8x3 - 27y3

= (2x)3 - (3y)3

= (2x - 3y).(4x2 + 6xy + 9y2)

h) x3 + y3 + 2x2 - 2xy + 2y2

= (x3 + y3) + (2x2 - 2xy + 2y2)

= (x + y).(x2 - xy + y2) + 2.(x2 - xy + y2)

= (x2 - xy + y2).(x + y + 2)

 g: \(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)

h:\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)\)

\(=\left(x^2-xy+y^2\right)\left(x+y+2\right)\)

14 tháng 8 2021

a) 15x2-5x3=5x2(3-x)

a: \(15x^2-5x^3=5x^2\left(3-x\right)\)

b: \(8x^3-y^3+4x^2y-2xy^2\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+2xy\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+4xy+y^2\right)\)

\(=\left(2x-y\right)\left(2x+y\right)^2\)

c: Ta có: \(x^8+64y^4\)

\(=x^8+16x^4y^2+64y^4-16x^4y^2\)

\(=\left(x^4+8y^2\right)^2-\left(4x^2y\right)^2\)

\(=\left(x^2-4x^2y+8y^2\right)\left(x^2+4x^2y+8y^2\right)\)

20 tháng 8 2021

1, \(x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x+y-2\right)\left(x-y\right)\)

2, \(x^2-25+y^2+2xy=\left(x+y\right)^2-5^2=\left(x+y-5\right)\left(x+y+5\right)\)

3, \(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)

4, \(x^4+2x^3+x^2=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

5, \(x^4+8x=x\left(x^3+8\right)=x\left(x+8\right)\left(x^2-8x+64\right)\)

\(1,\)

\(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

\(2,\)

\(x^2-25+y^2+2xy\)

\(=\left(x^2+2xy+y^2\right)-25\)

\(=\left(x+y\right)^2-5^2\)

\(=\left(x+y-5\right)\left(x+y+5\right)\)

\(3,\)

\(x^2y-x^3-9y+9x\)

\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(x^2-9\right)\left(y-x\right)\)

\(=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)

\(4,\)

\(x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(5,\)

\(x^4-8x\)

\(=x\left(x^3-8\right)\)

\(=x\left(x-2\right)\left(x^2+2x+4\right)\)