Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tích : \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)
=\(x^3\left(z-y\right)+x^2\left(z-y\right)\left(z+y\right)+y^3\left(x-z\right)+y^2\left(x-z\right)\left(x+z\right)\)
\(+z^3\left(y-x\right)+z^2\left(y-x\right)\left(y+x\right)\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2\left(z^2-y^2\right)+y^2\left(x^2-z^2\right)+z^2\left(y^2-x^2\right)\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2z^2-x^2y^2+y^2x^2-y^2z^2+z^2y^2-z^2x^2\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)
Như vậy:
\(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)
<=> \(\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)
Ta có: \(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{xz}+\frac{z\left(y-x\right)}{xy}}\)
\(=\frac{\frac{x^3\left(z-y\right)}{xyz}+\frac{y^3\left(x-z\right)}{xyz}+\frac{z^3\left(y-x\right)}{xyz}}{\frac{x^2\left(z-y\right)}{xyz}+\frac{y^2\left(x-z\right)}{xyz}+\frac{z^2\left(y-x\right)}{xyz}}\)
\(=\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)
Đa thức trên tương đương với đa thức:
\(\left(xy\left(x+y\right)+xyz\right)+\left(yz\left(y+z\right)+xyz\right)+\left(xz\left(x+z\right)+xyz\right)\)
=\(xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+y+z\right)\)
=\(\left(x+y+z\right)\left(xy+yz+xz\right)\)
xy(x + y) + yz( y + z )+ zx( z + x ) + 3xyz
=xy(x + y) + xyz + yz(y + z) + xyz + xz(x + z)+xyz
=zy(x + y + z) + yz(x + y + z) + xz(x + y + z)
=(x + y + z)(xy + yz + zx)
chúc bn hok tốt
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\)
\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)
\(\Rightarrow a+2b=\left(x+y+z\right)^2\)
Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b
=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b
Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2
= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2
=(x^2+y^2+z^2 +xy+yz+zx)^2
\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{\left(x^2-yz\right).\left(y+z\right)}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}+\frac{\left(y^2-xz\right).\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}+\frac{\left(z^2-xy\right).\left(x+y\right)}{\left(x+z\right)\left(y+z\right)\left(x+y\right)}\)
\(=\frac{x^2y-y^2z+x^2z-yz^2+y^2x-x^2z+zy^2-xz^2+z^2x-x^2y+yz^2-xy^2}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(=\frac{0}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(=0\)\(\left(\text{Đ}K:x+y,y+z,z+x\ne0\right)\)
Tham khảo nhé~
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)