Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) 4x2 - 6x
= 2x( 2x - 3 )
b) 9x4y3 + 3x2y4
= 3x2y3( 3x2 + y )
c) x3 - 2x2 + 5x
= x( x2 - 2x + 5 )
d) 3x( x - 1 ) + 5( x - 1 )
= ( x - 1 )( 3x + 5 )
e) 2x2( x + 1 ) + 4( x + 1 )
= ( x + 1 )( 2x2 + 4 )
= ( x + 1 )2( x2 + 2 )
= 2( x + 1 )( x2 + 2 )
f) -3x - 6xy + 9xz
= -( 3x + 6xy - 9xz )
= -3x( 1 + 2y - 3z )
# Học tốt #
a) \(7x^3y-3xyz-21x^2+9z\)
\(=7x^2\left(xy-3\right)-3z\left(xy-3\right)\)
\(=\left(7x^2-3z\right)\left(xy-3\right)\)
b) \(4x^2-2x-y^2-y\)
\(=\left[\left(2x\right)^2-y^2\right]-\left(2x+y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\)
\(=\left(2x+y\right)\left(2x-y-1\right)\)
c) \(9x^2-25y^2-6x+10y\)
\(=\left(3x\right)^2-\left(5y\right)^2-2\left(3x-5y\right)\)
\(=\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\)
\(=\left(3x-5y\right)\left(3x+5y-2\right)\)
d) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x-4\right)\left(3x+2\right)\)
\(=\left(5x-4\right)\left[\left(5x-4\right)+\left(3x+2\right)\right]+\left(4^2-\left(5x\right)^2\right)\)
\(=\left(5x-4\right)\left(8x-2\right)+\left(4-5x\right)\left(4+5x\right)\)
\(=\left(4-5x\right)\left(2-8x\right)+\left(4-5x\right)\left(4+5x\right)\)
\(=\left(4-5x\right)\left[\left(2-8x\right)+\left(4+5x\right)\right]\)
\(=\left(4-5x\right)\left(6-3x\right)\)
1.
a) \(\left(-2x^3\right)\)\(\left(x^2+5x-\frac{1}{2}\right)\) = \(-2x^5\)\(-10x^4\) \(+x^3\)
b) (\(6x^3-7x^2\)\(-x+2\))\(:\left(2x+1\right)\)=\(3x^2-5x+2\)
2.
a) 9x(3x-y) + 3y (y-3x)=9x(3x-y)-3y(3x-y)
= (9x-3y)(3x-y)
= 3(3x-y)(3x-y)
= 3(3x-y)^2
b) \(x^3-3x^2\)\(-9x+27\)= \(\left(x^3-3x^2\right)\)\(-\left(9x-27\right)\)
= \(x^2\left(x-3\right)\)\(-9\left(x-3\right)\)
= \(\left(x^2-9\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)^2\)
Bài 1 ) a ) \(\left(-2x^3\right)\left(x^2+5x-\frac{1}{2}\right)\)
\(=-2x^5-10x^4+x^3\)
b ) \(\left(6x^3-7x^2+x+2\right):\left(2x+1\right)\)
\(=3x^2-5x+2\)
2 ) a ) \(9x\left(3x-y\right)+3y\left(y-3x\right)\)
\(=9x\left(3x-y\right)-3y\left(3x-y\right)\)
\(=\left(3x-y\right)\left(9x-3y\right)\)
\(=3\left(3x-y\right)\left(x-y\right)\)
b ) \(x^3-3x^2-9x+27\)
\(=\left(x^3-3x^2\right)-\left(9x-27\right)\)
\(=x^2\left(x-3\right)-9\left(x-3\right)\)
\(=\left(x^2-9\right)\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x-3\right)\)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
a) 4x2 - 20x + 25 - 36y2
= (2x - 5)2 - 36y2
= (2x - 5 - 6y)(2x - 5 + 6y)
b) x3 + x2 - 2x - 8
= (x3 - 8) + (x2 - 2x)
= (x - 2)(x2 + 2x + 4) + x(x - 2)
= (x - 2)(x2 + 2x + 4 + x)
= (x - 2)(x2 + 3x + 4)
d) x4 + 6x3 + 9x2 - 16
= x2(x2 + 6x + 9) - 16
= x2(x + 3)2 - 16
= (x2 + 3x)2 - 16
= (x2 + 3x - 4)(x2 + 3x + 4)
= (x2 + 4x - x - 4)(x2 + 3x + 4)
= [x(x + 4) - (x + 4)](x2 + 3x + 4)
= (x - 1)(x + 4)(x2 + 3x + 4)
a)
\(4x^2-9y^2+6x-9y=\left(2x-3y\right)\left(2x+3\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b)
\(1-2x+2yz+x^2-y^2-z^2=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\) (đổi dấu)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
c)
\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5\left(x+1\right)+3\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
Bài 1:
a) \(3x^2-9x=3x\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
Bài 2:
a) \(101^2-1=\left(101-1\right)\left(101+1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2\)
\(=\left(67+33\right)^2=100^2=10000\)
Bài 3:
\(x\left(x-3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Vậy \(x=-2\)hoặc \(x=3\)
B1:
a) \(3x^2-9x=3x.\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3+y\right).\left(x+3-y\right)\)
B2:
a) \(101^2-1=\left(101+1\right).\left(101-1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2=\left(67+33\right)^2=100^2=10000\)
B3:
\(x\left(x-3\right)+2\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a) \(4x^2-6x=2x\left(2x-3\right)\)
b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(x^2+y\right)\)
c) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)