K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

a) x2 – y2 – 2y – 1 = x2 - (y2 + 2y + 1)

= x2 - (y + 1)2

= (x + y + 1)(x - y - 1)

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
21 tháng 10 2021

a) \(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

21 tháng 10 2021

b) \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)\)

\(=\left(x+3\right)\left(x+2\right)\)

a: =(x+y)^2*(x-y)+x(y-x)

=(x-y)[(x+y)^2-x]

28 tháng 7 2023

dấu * là j vậy bạn

 

a: =(x-y)(5-y)

b: \(=x^2-6x+9-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

4 tháng 3 2022

\(a,5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\\ b,x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\)

nhờ giải giupws em với a 1. Phân tích các đa thức sau thành nhân tử: a)     5x2 – 10xy b)    3x(x – y)  –  6(x – y) c)     2x(x – y) – 4y(y – x) d)    9x2 – 9y2 e)     x2 – xy – x + y f)      xy – xz – y + z 2. Phân tích các đa thức sau thành nhân tử:  a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                          c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2 e)x2 + 10x + 25                f) 25x2 –...
Đọc tiếp

nhờ giải giupws em với a

1. Phân tích các đa thức sau thành nhân tử:

a)     5x2 – 10xy

b)    3x(x – y)    6(x – y)

c)     2x(x – y) – 4y(y – x)

d)    9x2 – 9y2

e)     x2 – xy – x + y

f)      xy – xz – y + z

2. Phân tích các đa thức sau thành nhân tử:

 a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                         

c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2

e)x2 + 10x + 25                f) 25x2 – 20xy + 4y2

      g)9x4 + 24x2 + 16             h) x3 – 125

      i)x6 – 1                            k) x3 + 15x2 + 75x + 125

3. Tìm x biết :

a) 3x2 + 8x = 0              b) 9x2 – 25 = 0          c) x3 – 16x = 0     d) x3 + x = 0.

4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6

 

1
19 tháng 12 2023

Bài `1`

\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)

Bài `3`

\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)

\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)

22 tháng 11 2021

\(a,=x^2-9-x^2+6x-9=6x-18\\ b,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)

13 tháng 12 2023

\(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right).\left(x^4-x^2y^2+y^4\right)\\ ---\\ 0,04-9x^2=\left(0,2\right)^2-\left(3x\right)^2=\left(0,2-3x\right)\left(0,2+3x\right)\\ ---\\ 32x^2-2\left(y-1\right)^2=2\left[16x^2-\left(y-1\right)^2\right]=2\left[\left(4x\right)^2-\left(y-1\right)^2\right]\\ =2\left(4x-y+1\right)\left(4x+y-1\right)\)

7 tháng 5 2022

`a)5(x-y)-y(x-y)`

`=(x-y)(5-y)`

`b)x^2-6x-y^2+9`

`=(x^2-6x+9)-y^2`

`=(x-3)^2-y^2`

`=(x-3-y)(x-3+y)`

a: \(=x^2\left(x-y\right)+2014\left(x-y\right)=\left(x-y\right)\left(x^2+2014\right)\)