K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

a) ( 3x - 1 )2 - 16 = ( 3x - 1 )2 - 42 = ( 3x - 1 - 4 )( 3x - 1 + 4 ) = ( 3x - 5 )( 3x + 3 ) = 3( 3x - 5 )( x + 1 )

b) ( 5x - 4 )2 - 49x2 = ( 5x - 4 )2 - ( 7x )2 = ( 5x - 4 - 7x )( 5x - 4 + 7x ) = ( -2x - 4 )( 12x - 4 ) = -2( x + 2 ).4( 3x - 1 ) = -8( x + 2 )( 3x - 1 )

c) ( 2x + 5 )2 - ( x - 9 )2 = [ ( 2x + 5 ) - ( x - 9 ) ][ ( 2x + 5 ) + ( x - 9 ) ] = ( 2x + 5 - x + 9 )( 2x + 5 + x - 9 ) = ( x + 14 )( 3x - 4 )

d) ( 3x + 1 )2 - 4( x - 2 )2 = ( 3x + 1 )2 - 22( x - 2 )2 = ( 3x + 1 )2 - [ 2( x - 2 ) ]2 = ( 3x + 1 )2 - ( 2x - 4 )2 = [ ( 3x + 1 ) - ( 2x - 4 ) ][ ( 3x + 1 ) + ( 2x - 4 ) ] = ( 3x + 1 - 2x + 4 )( 3x + 1 + 2x - 4 ) = ( x + 5 )( 5x - 3 )

e) 9( 2x + 3 )2 - 4( x + 1 )2 = 32( 2x + 3 )2 - 22( x + 1 )2 = [ 3( 2x + 3 ) ]2 - [ 2( x + 1 ) ]2 = ( 6x + 9 )2 - ( 2x + 2 )2 = [ ( 6x + 9 ) - ( 2x + 2 ) ][ ( 6x + 9 ) + ( 2x + 2 ) ] = ( 6x + 9 - 2x - 2 )( 6x + 9 + 2x + 2 ) = ( 4x + 7 )( 8x + 11 )

f) 4b2c2 - ( b2 + c2 - a2 )2 = ( 2bc )2 - ( b2 + c2 - a2 )2 = [ 2bc - ( b2 + c2 - a2 ) ][ 2bc + ( b2 + c2 - a2 ] = ( 2bc - b2 - c2 + a2 )( 2bc + b2+ c2 - a2 ) = [ a2 - ( b2 - 2bc + c2 ) ][ ( b2 + 2bc + c2 ) - a2 ] = [ a2 - ( b - c )2 ][ ( b + c )2 - a2 ] = ( a - b + c )( a + b - c )( b + c - a )( b + c + a )

7 tháng 10 2020

g) ( ax + by )2 - ( ay + bx )2 

= [ ( ax + by ) - ( ay + bx ) ][ ( ax + by ) + ( ay + bx ) ]

= ( ax + by - ay - bx )( ax + by + ay + bx )

= [ a( x - y ) - b( x - y ) ][ a( x + y ) + b( x + y ) ]

= ( a - b )( x - y )( x + y )( a + b )

h) ( a2 + b2 - 5 )2 - 4( ab + 2 )2 

= ( a2 + b2 - 5 )2 - 22( ab + 2 )2 

= ( a2 + b2 - 5 )2 - [ 2( ab + 2 ) ]2 

= ( a2 + b2 - 5 )2 - ( 2ab + 4 )2 

= [ ( a2 + b2 - 5 ) - ( 2ab + 4 ) ][ ( a2 + b2 - 5 ) + ( 2ab + 4 ) ]

= ( a2 + b2 - 5 - 2ab - 4 )( a2 + b2 - 5 + 2ab + 4 )

= [ ( a2 - 2ab + b2 ) - 9 ][ ( a2 + 2ab + b2 ) - 1 ]

= [ ( a - b )2 - 32 ][ ( a + b )2 - 12 ]

= ( a - b - 3 )( a - b + 3 )( a + b - 1 )( a + b + 1 )

i) ( 4x2 - 3x - 18 )2 - ( 4x2 + 3x )2

= [ ( 4x2 - 3x - 18 ) - ( 4x2 + 3x ) ][ ( 4x2 - 3x - 18 ) + ( 4x2 + 3x ) ]

= ( 4x2 - 3x - 18 - 4x2 - 3x )( 4x2 - 3x - 18 + 4x2 + 3x )

= ( -6x - 18 )( 8x2 - 18 )

= -6( x + 3 ).2( 4x2 - 9 )

= -12( x + 3 )( 2x - 3 )( 2x + 3 )

k) 9( x + y - 1 )2 - 4( 2x + 3y + 1 )2

= 32( x + y - 1 )2 - 22( 2x + 3y + 1 )2

= [ 3( x + y - 1 ) ]2 - [ 2( 2x + 3y + 1 ) ]2

= ( 3x + 3y - 3 )2 - ( 4x + 6y + 2 )2

= [ ( 3x + 3y - 3 ) - ( 4x + 6y + 2 ) ][ ( 3x + 3y - 3 ) + ( 4x + 6y + 2 ) ]

= ( 3x + 3y - 3 - 4x - 6y - 2 )( 3x + 3y - 3 + 4x + 6y + 2 )

= ( -x - 3y - 5 )( 7x + 9y - 1 )

l) -4x2 + 12xy - 9y2 + 25

= 25 - ( 4x2 - 12xy + 9y2 )

= 52 - ( 2x - 3y )2

= ( 5 - 2x + 3y )( 5 + 2x - 3y )

m) x2 - 2xy + y2 - 4m2 + 4mn - n2

= ( x2 - 2xy + y2 ) - ( 4m2 - 4mn + n2 )

= ( x - y )2 - ( 2m - n )2

= ( x - y - 2m + n )( x - y + 2m - n )

16 tháng 8 2018

Mk chỉ lm 2 phần đầu thôi ,bn tham khảo nha!!!

\(a,\left(3x-1\right)^2-16=\left(3x-1+4\right)\left(3x-1-4\right)=\left(3x+3\right)\left(3x-5\right)=3\left(x+1\right)\left(3x-5\right)\)

\(b,\left(5x-4\right)^2-49x^2=\left(5x-4+7x\right)\left(5x-4-7x\right)\)

\(=\left(12x-4\right)\left(-2x-4\right)\)

\(=4\left(3x-1\right)\left(-2\right)\left(x+2\right)\)

\(=-8\left(3x-1\right)\left(x+2\right)\)

=.= hok tốt!!

30 tháng 9 2018

\(\left(3x-1\right)^2-16\)

\(=\left(3x-1\right)^2-4^2\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

\(=3\left(x+1\right)\left(3x-5\right)\)

2 tháng 10 2020

a) ( 4x2 - 3x - 18 )2 - ( 4x2 + 3x )2

= [ ( 4x2 - 3x - 18 ) - ( 4x2 + 3x ) ][ ( 4x2 - 3x - 18 ) + ( 4x2 + 3x ) ]

= ( 4x2 - 3x - 18 - 4x2 - 3x )( 4x2 - 3x - 18 + 4x2 + 3x )

= ( -6x - 18 )( 8x2 - 18 )

= -6( x + 3 ).2( 4x2 - 9 )

= -12( x + 3 )( 2x - 3 )( 2x + 3 )

b) 9( x + y - 1 )2 - 4( 2x + 3y + 1 )2

= 32( x + y - 1 )2 - 22( 2x + 3y + 1 )2

= [ 3( x + y - 1 ) ]2 - [ 2( 2x + 3y + 1 ) ]2

= ( 3x + 3y - 3 )2 - ( 4x + 6y + 2 )2

= [ ( 3x + 3y - 3 ) - ( 4x + 6y + 2 ) ][ ( 3x + 3y - 3 ) + ( 4x + 6y + 2 ) ]

= ( 3x + 3y - 3 - 4x - 6y - 2 )( 3x + 3y - 3 + 4x + 6y + 2 )

= ( -x - 3y - 5 )( 7x + 9y - 1 )

c) -4x2 + 12xy - 9y2 + 25

= 25 - ( 4x2 - 12xy + 9y2 )

= 52 - ( 2x - 3y )2

= [ 5 - ( 2x - 3y ) ][ 5 + ( 2x - 3y ) ]

= ( 5 - 2x + 3y )( 5 + 2x - 3y )

d) x2 - 2xy + y2 - 4m2 + 4mn - n2

= ( x2 - 2xy + y2 ) - ( 4m2 - 4mn + n2 )

= ( x - y )2 - ( 2m - n )2

= [ ( x - y ) - ( 2m - n ) ][ ( x - y ) + ( 2m - n ) ]

= ( x - y - 2m + n )( x - y + 2m - n )

3 tháng 7 2017

bn chép lại đề nhé

a/ \(=\left(x+y\right)^2-4x^2y^2=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

b/ \(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[-\left(b+c\right)^2+a^2\right]\)

\(=\left(b+c-a\right)\left(b+c+a\right)^2\left(a-b-c\right)\)

c/ \(=2a^2+2b^2-2c^2+4ab=2\left[\left(a^2+b^2+2ab\right)-c^2\right]\)

\(=2\left(a+b-c\right)\left(a+b+c\right)\)

d/ \(=\left(4x^2-25\right)^2-9\left(4x^2-20x+25\right)\)

\(=\left(4x^2-25\right)^2-9\left(4x^2+25\right)+180x\)

tới đây bạn đặt a= 4x^2 -25 rồi làm típ nha, mình lười quá >< 

e/ tương tự câu d nha bạn

f/ \(=a^4\left(a^2-1\right)+2a^2\left(a+1\right)\)

\(=a^4\left(a-1\right)\left(a+1\right)+2a^2\left(a+1\right)\)

\(=a^2\left(a+1\right)\left(a^2+2\right)\)

g/   đặt \(a=3x^2+3x+2\) khi đó biểu thức trở thành

\(a^2-\left(a+4\right)^2=a^2-a^2-8a-16\)

\(=-8a-16=-8\left(3x^2+3x+2-8\right)=-8\left(3x^2+3x-6\right)\)

\(=-24\left(x^2+x-2\right)=-24\left(x-1\right)\left(x+2\right)\)

xong rùi nha bn. Chúc bn hc tốt (xin lỗi tại có mấy câu mình lười nha)

3 tháng 9 2018

\(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)

\(=\left(x+y\right)^2-4x^2y^2\)

\(=\left(x-2xy+y\right)\left(x+2xy+y\right)\)

18 tháng 6 2019

App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618

18 tháng 12 2017

4.a) \(2x^2-10x-3x-2x^2-26=0\)

\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)

\(\Rightarrow x=-2\)

b) \(2\left(x+5\right)-x^2-5x=0\)

\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)

\(-\left(x^2+3x-10\right)=0\)

\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)

\(-\left(x-2\right)\left(x+5\right)=0\)

\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

d) \(x^3+x^2-4x-4=0\)

\(x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

g) \(\left(x-1\right)\left(2x+3-x\right)=0\)

\(\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)

\(\left(x-3\right)^2=0\Rightarrow x=3\)

Bài 2. Thực hiện phép nhân: a. 3x(4x - 3) - (2x -1)(6x + 5) b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1) c. (x - 2)(1x + 2)(x + 4) Bài 3. Chứng ming rằng: a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2 c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3 e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4 Bài 4. Tìm x biết: a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12 c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 ...
Đọc tiếp

Bài 2. Thực hiện phép nhân:

a. 3x(4x - 3) - (2x -1)(6x + 5)

b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1)

c. (x - 2)(1x + 2)(x + 4)

Bài 3. Chứng ming rằng:

a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2

c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3

e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4

Bài 4. Tìm x biết:

a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12

c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 d. 4x(x -1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)

e. 2(3x -1)(2x + 5) - 6(2x -1)(x + 2) = -6

Bài 5. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x:

a. A = 2x(x -1) - x(2x + 1) - (3 - 3x) b. B = 2x(x - 3) - (2x - 2)(x - 2)

c. C = (3x - 5)(2x +11) - (2x + 3)(3x + 7) d. D = (2x +11)(3x - 5) - (2x + 3)(3x + 7)

Bài 6. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào y:

P = (2x - y)(4x2 + 2xy + y2 ) + y3

các bạn ơi giúp mình nha

3
8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. Bài 7: Phân tích đa thức thành nhân tử e. (x2 + y5 - 5)2 - 4 (xy + 2)2 f. (4x2 - 3x - 18)2 - (4x2 +3x)2 Bài 10: Phân tích đa thức thành nhân tử a. x2 - 4x2y2 + y2 +2xy b. x6 - y6 c. 25 - x2 + 2xy - y2 d. 4b2c2 - (b2 + c2 - a2) e. (x + y + z)2 + (x + y -z)2 - 4z2 f. 9 (x +y - 1)2 - 4 (2x + 3y + 1)2 Bài 11: Phân tích đa thức thành nhân tử a. (x2 - 25)2...
Đọc tiếp

Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.

Bài 7: Phân tích đa thức thành nhân tử

e. (x2 + y5 - 5)2 - 4 (xy + 2)2

f. (4x2 - 3x - 18)2 - (4x2 +3x)2

Bài 10: Phân tích đa thức thành nhân tử

a. x2 - 4x2y2 + y2 +2xy

b. x6 - y6

c. 25 - x2 + 2xy - y2

d. 4b2c2 - (b2 + c2 - a2)

e. (x + y + z)2 + (x + y -z)2 - 4z2

f. 9 (x +y - 1)2 - 4 (2x + 3y + 1)2

Bài 11: Phân tích đa thức thành nhân tử

a. (x2 - 25)2 - (x - 5)2

b. (4x2 - 25)2 - 9(2x - 5)2

c. 4 (2x - 3)2 - 9 (4x2 - 9)2

d. x6 - x4 + 2x3 + 2x2

e. (3x3 + 3x + 2)2 - (3x2 + 3x - 2)2

f. x3 + y3 + z3 - 3xyz

Bài 12: Phân tích đa thức thành nhân tử

a. (xy +1)2 - (x + y)2

b. (x + y)3 - (x - y)3

c. 3x4y2 + 3x3y2 + 3xy2 + 3y2

d. 4 (x2 - y2) - 8 (x - ay) - 4 (a2 -1)

e. (x +y)3 -1 -3xy (x +y -1)

Bài 13: Tính nhanh:

b. 482 - 422 + 64 - 522

d. 722 + 144.16 + 162 - 122

e. \(\dfrac{43^2-11^2}{\left(36-5\right)^2-\left(27-5\right)^2}\)

f. 732 - 132 - 102 + 20.13

1

Bài 12: 

a: \(=\left(xy+1+x+y\right)\left(xy+1-x-y\right)\)

\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left[x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(x+1\right)\left(x-1\right)\left(y+1\right)\left(y-1\right)\)

b: \(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\cdot\left(3x^2+y^2\right)\)

c: \(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left[x^3\left(x+1\right)+\left(x+1\right)\right]\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)