Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sao khó quá z trời , nhưng mình biết kết quả là: \(\frac{1}{1599}\)
Đúng k các bạn, đi
xét: \(\frac{1}{3}=\frac{1}{1.3}\)
\(\frac{1}{15}=\frac{1}{3.5}\)
.....
thức hiện phép tính(20-1).2+1=39
=> phân số thứ 20là \(\frac{1}{39.41}=\frac{1}{1599}\)
Phân số thứ 20 à , hơi khó đó
Nhưng kết quả là:\(\frac{1}{1599}\)
Ta có
\(\frac{1}{3}=\frac{1}{1.3}\)
\(\frac{1}{15}=\frac{1}{3.5}\)
\(\frac{1}{35}=\frac{1}{5.7}\)
\(\frac{1}{63}=\frac{1}{7.9}\)
Thực hiện phép tính:
\(\left(20-1\right).2+1=39\)
\(\Rightarrow\) Phân số thứ 20 của dãy là \(\frac{1}{39.40}=\frac{1}{1599}\)
Ta thấy :
\(\frac{1}{3}=\frac{1}{1X3};\frac{1}{15}=\frac{1}{3X5};\frac{1}{35}=\frac{1}{5X7};\frac{1}{63}=\frac{1}{7X9}\)
=> Phân số tiếp theo là \(\frac{1}{9X11}\)
hay \(\frac{1}{99}\)
bạn phải cho số cuối cùng thì mình mới làm được , nếu không có thì giáo viên của bạn cho sai đề
Ta có
\(\frac{2}{3\cdot4}=\frac{2}{\left(1+2\right)+\left(1+3\right)}\)
\(\frac{2}{4\cdot5}=\frac{2}{\left(2+2\right)\cdot\left(2+3\right)}\)
...
Phân số thứ n là \(\frac{2}{\left(n+2\right)\cdot\left(n+3\right)}\)\(n\in N\)
Phân số thứ 50 là \(\frac{2}{\left(50+2\right)\cdot\left(50+3\right)}=\frac{2}{52\cdot53}\)
\(\Rightarrow\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{52\cdot53}\)
\(=2\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...\frac{1}{52\cdot53}\right)\)
\(=2\cdot\left(\frac{1}{3}-\frac{1}{4}+...+\frac{1}{52}-\frac{1}{53}\right)\)
\(=2\cdot\left(\frac{1}{3}-\frac{1}{53}\right)=\left(\frac{50\cdot2}{159}\right)=\frac{100}{159}\)
Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)
=> Số hạng thứ 98 là : \(\frac{99^2}{98.100}\)
=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)
Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)
=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)
Vậy ta cần tính tích:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)
= \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)
=\(\frac{99.2}{1.100}=\frac{99}{50}\)
sao nhiều thế
sao khó thế