![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Các phân số tối giản vì tử số và mẫu số của chúng không cùng chia hết cho số hơn lơn 1 ( hoặc vì ta không thể rút gọn được các phân số đó nữa):
b) Phân số rút gọn :
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{9}{11}\) = \(\dfrac{36}{44}\)⇒ tỉ số tử số lúc đầu so với mẫu số lúc đầu là: \(\dfrac{36}{44}\)
\(\dfrac{5}{4}\) = \(\dfrac{55}{44}\) ⇒ tỉ số tử số lúc sau so với mẫu số lúc đầu là: \(\dfrac{55}{44}\)
Tỉ số của tử số lúc đầu so với tử số lúc sau là : \(\dfrac{36}{44}\) : \(\dfrac{55}{44}\) = \(\dfrac{36}{55}\)
Hiệu tử số lúc sau và tử số lúc đầu là 38
Tử số lúc đầu là: 38 : ( 55 - 36) \(\times\) 36 = 72
Mẫu số lúc đầu là: 72 : \(\dfrac{9}{11}\) = 88
Phân số cần tìm là \(\dfrac{72}{88}\)
Thử lại ta có \(\dfrac{72}{88}\) = \(\dfrac{9}{11}\) ( ok)
\(\dfrac{72+38}{88}\)= \(\dfrac{5}{4}\) ( ok nốt nhá em)
Vậy phân số \(\dfrac{72}{88}\) là phân số cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
17/13= 17/13 , 14/23= 14/23 , 75/100=3/4 , 9/13=9/13 , 9/23=9/23 , 15/60=5/12
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Các phân số tối giản vì tử số và mẫu số của chúng không cùng chia hết cho số hơn lơn 1 ( hoặc vì ta không thể rút gọn được các phân số đó nữa):
b) Phân số rút gọn :
\(\frac{39}{65}=\frac{3}{5}\)
~~~Hok tốt~~~