Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=\frac{2019}{2020}+\frac{2020}{2021}+\frac{2021}{2019}=1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{2}{2019}\)
\(=3+\left(\frac{1}{2019}-\frac{1}{2020}\right)+\left(\frac{1}{2019}-\frac{1}{2021}\right)>3+0+0=3\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(1\times2\times3\times...\times2020\times2021\)có chữ số tận cùng là \(0\)do trong tích đó có thừa số có chữ số tận cùng là \(0\).
\(1\times3\times5\times...\times2019\times2021\)có chữ số tận cùng là \(5\)do là tích các số lẻ, và trong đó có số có chữ số tận cùng là \(5\).
Do đó \(A=1\times2\times3\times...\times2020\times2021-1\times3\times5\times...\times2019\times2021\)có chữ số tận cùng là \(5\).
Ta có:\(\frac{5}{8};\frac{3}{5};\frac{7}{10};\frac{8}{7}\)
Ta thấy:\(\frac{5}{8}< 1;\frac{3}{5}< 1;\frac{7}{10}< 1\)
Mà\(\frac{8}{7}>1\)
=>\(\frac{8}{7}\)lớn nhất
Ta có:\(\frac{5}{8}=0,625\)
\(\frac{3}{5}=0,6\)
\(\frac{7}{10}=0,7\)
Vì\(0,6< 0,625< 0,7\)
\(\Rightarrow\frac{3}{5}< \frac{5}{8}< \frac{7}{10}\)
Các phân số được sắp xếp theo thứ tự từ bé đến lớn là:\(\frac{3}{5};\frac{5}{8};\frac{7}{10};\frac{8}{7}\)
Các phân số được sắp xếp theo thứ tự từ lớn đến bé là:\(\frac{8}{7};\frac{7}{10};\frac{5}{8};\frac{3}{5}\)
Linz
2017/2020<2019/2020< 1
1< 2022/2021< 2023/2021
vậy phân số lớn nhất là 2023/2021
ta so sánh với 1:
2017/2020<2019/2020< 1
1< 2022/2021< 2023/2021
nên phân số lớn nhất là phân số cuối: 2023/2021
Phân số bé nhất là: \(\dfrac{2021}{2022}\)
2020/2021