K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2016

Một bài toán làm chung làm riêng khá quen :))

Coi thể tích bể là 1. Gọi x là thể tích nước vòi 1 chảy trong 1 h. \(\left(x>0\right)\)

Khi đó thể tích vòi 2 chảy trong 1h là: \(\frac{1}{\frac{10}{3}}-x=\frac{3}{10}-x\)

Từ đó ta có phương trình: \(3x+2\left(\frac{3}{10}-x\right)=\frac{4}{5}\Leftrightarrow x+\frac{3}{5}=\frac{4}{5}\Leftrightarrow x=\frac{1}{5}\)

Vậy thời gian để vòi 1 chảy một mình mà đầy bể là: \(1:\frac{1}{5}=5\left(h\right)\)

Chúc em học tập tốt :)))

7 tháng 10 2021

:))))

8 tháng 4 2023

Giả sử thời gian cần thiết để vòi thứ nhất chảy đầy bể là $a$ giờ, và thời gian cần thiết để vòi thứ hai chảy đầy bể là $b$ giờ. Theo đề bài, ta có:

1. Khi cả hai vòi cùng chảy, bể đầy trong 3 giờ 20 phút (tức là 3 giờ 20/60 = 3 + 1/3 = 10/3 giờ). Ta có công thức:
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{\frac{10}{3}}$$

2. Vòi thứ nhất chảy một mình trong 7/10 của 2 giờ (tức là 1.4 giờ), sau đó vòi thứ hai chảy một mình trong 3 giờ thì cả hai vòi chảy được bể. Ta có công thức:
$$\frac{1.4}{a} + \frac{3}{b} = 1$$

Bây giờ, ta sẽ giải hệ phương trình trên để tìm $a$ và $b$.

**Bước 1:** Từ phương trình (1), ta có:
$$b = \frac{a\left(\frac{10}{3}\right)}{a - \frac{10}{3}}$$

**Bước 2:** Thay biểu thức của $b$ tìm được ở trên vào phương trình (2), ta được:
$$\frac{1.4}{a} + \frac{3}{\frac{a\left(\frac{10}{3}\right)}{a - \frac{10}{3}}} = 1$$

**Bước 3:** Giải phương trình trên, ta tìm được $a = 4$ giờ.

**Bước 4:** Thay $a = 4$ vào biểu thức của $b$, ta tìm được $b = 6$ giờ.

Vậy, thời gian mỗi vòi chảy một mình đầy bể là 4 giờ và 6 giờ.

12 tháng 6 2023

Gọi thời gian mà ô tô cần để đến Hải Phòng là $t$ (đơn vị giờ).

Khi xuất phát, ô tô đi được trong 30 phút đầu tiên với vận tốc 40 km/h, nên khoảng cách đã đi được trong 30 phút đó là:

$$d_1 = 40 \times \frac{1}{2} = 20 \text{ km}$$

Khoảng cách còn lại để đi là:

$$d_2 = 100 - d_1 = 80 \text{ km}$$

Khi tăng vận tốc thêm 10 km/h, ô tô đi được trong $t - \frac{1}{2}$ giờ với vận tốc 50 km/h, nên khoảng cách đã đi được trong khoảng thời gian đó là:

$$d_3 = 50 \times \left(t - \frac{1}{2}\right)$$

Tổng khoảng cách đã đi được là:

$$d_1 + d_2 + d_3 = 20 + 80 + 50 \times \left(t - \frac{1}{2}\right) = 130 + 50t - 25 = 105 + 50t$$

Theo đề bài, ô tô đến sớm hơn dự định 24 phút, tức là thời gian thực tế để ô tô đi từ Hà Nội đến Hải Phòng là $t - \frac{1}{2} - \frac{2}{5} = t - \frac{9}{10}$ (đơn vị giờ). Ta có phương trình:

$$\frac{d_1 + d_2 + d_3}{60} = t - \frac{9}{10}$$

Thay $d_1 + d_2 + d_3$ bằng $105 + 50t$, ta được:

$$\frac{105 + 50t}{60} = t - \frac{9}{10}$$

Giải phương trình trên ta có:

$$t = \frac{465}{38} \approx 12.24$$

Vậy ô tô dự định đến Hải Phòng lúc 18 giờ 14 phút ($6 \text{ giờ } + 12 \text{ giờ } 14 \text{ phút}$).

29 tháng 11 2023

Gọi thời gian để vòi 1 chảy một mình đầy bể là x(giờ), thời gian để vòi 2 chảy một mình đầy bể là y(giờ)

(Điều kiện: x>0 và y>0)

Nếu để chảy một mình thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 2 giờ nên ta có: b-a=2

=>b=a+2(1)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{a}\left(bể\right)\)

Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{b}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được:

\(1:\dfrac{4}{3}=\dfrac{3}{4}\left(bể\right)\)

Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}b=a+2\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+2\\\dfrac{1}{a}+\dfrac{1}{a+2}=\dfrac{3}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=a+2\\\dfrac{a+2+a}{a\left(a+2\right)}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+2\\\dfrac{2a+2}{a^2+2a}=\dfrac{3}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3\left(a^2+2a\right)=4\left(2a+2\right)\\b=a+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3a^2+6a-8a-8=0\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a^2-2a-8=0\\b=a+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3a^2-6a+4a-8=0\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(3a+4\right)=0\\b=a+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a-2=0\\3a+4=0\end{matrix}\right.\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\\b=a+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=2\\b=2+2=4\end{matrix}\right.\left(nhận\right)\)

Vậy: Thời gian để vòi 1 chảy một mình đầy bể là 2 giờ

Thời gian để vòi 2 chảy một mình đầy bể là 4 giờ