Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x-x^2+4=0\)
\(\Leftrightarrow4-19x=0\Leftrightarrow19x=4\Leftrightarrow x=\dfrac{4}{19}\)
b)\(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-5x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3-5x^2+5x=0\)
\(\Leftrightarrow-15x-3=0\)\(\Leftrightarrow-15x=3\Leftrightarrow x=-\dfrac{1}{5}\)
a, \(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x=x^2-4\)
\(\Leftrightarrow19x=4\)
\(\Leftrightarrow x=\dfrac{4}{19}\)
Vậy...
b, \(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-6x+x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3=5x^2-5x\)
\(\Leftrightarrow-20x-3=-5x\)
\(\Leftrightarrow-15x=3\)
\(\Leftrightarrow x=\dfrac{-1}{5}\)
Vậy...
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)
\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)
\(A=-12x\)
\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)
\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)
\(B=-3x-12\)
Câu C tương tự.
Chúc bạn học tốt!!!
A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)
A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)
A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)
A = \(-4x^2-12x-8+4x^2+8=-12x\)
b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)
B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)
B = \(-6x^2-3x-6\)
a: \(A=2x-3-5x+2-3x+1=-6x=-6\cdot\dfrac{-2}{3}=4\)
b: \(B=x^{2n-2n+3}=x^3=\left(-3\right)^3=-27\)
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\) (1)
\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)=16\)
\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2+x-5\right)=16\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2-x+5=16\)
\(\Leftrightarrow18x-2=16\)
\(\Leftrightarrow18x=16+2\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{1\right\}\)
b) \(\left(10x+9\right)\cdot x-\left(5x-1\right)\left(2x+3\right)=8\) (2)
\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-\left(10x^2+13x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=8-3\)
\(\Leftrightarrow-4x=5\)
\(\Leftrightarrow x=-\dfrac{5}{4}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{5}{4}\right\}\)
c) \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\) (3)
\(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\Leftrightarrow42x-41=0\)
\(\Leftrightarrow42x=41\)
\(\Leftrightarrow x=\dfrac{41}{42}\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{41}{42}\right\}\)
d) \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) (4)
\(\Leftrightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)
\(\Leftrightarrow x^3+6x^2+x^2+6x-x^3=5x\)
\(\Leftrightarrow7x^2+6x=5x\)
\(\Leftrightarrow7x^2+6x-5x=0\)
\(\Leftrightarrow7x^2+x=0\)
\(\Leftrightarrow x\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\7x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (4) là \(S=\left\{-\dfrac{1}{7};0\right\}\)
a) \(7x^2-28=0\Leftrightarrow7\left(x^2-4\right)=0\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) vậy \(x=2;x=-2\)
b) \(\left(2x+1\right)+x\left(2x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\) vậy \(x=-1;x=\dfrac{-1}{2}\)
c) \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)
d) \(9\left(3x-2\right)=x\left(2-3x\right)\Leftrightarrow9\left(3x-2\right)=-x\left(3x-2\right)\)
\(\Leftrightarrow9\left(3x-2\right)+x\left(3x-2\right)=0\Leftrightarrow\left(9+x\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+x=0\\3x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\3x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x=-9;x=\dfrac{2}{3}\)
e) \(5x\left(x-3\right)-2x+6=0\Leftrightarrow5x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(5x-2\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\) vậy \(x=\dfrac{2}{5};x=3\)
ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)
\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\) là \(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
vậy giá trị nhỏ nhất của \(m=x^2-x+1\) là \(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
a) 3x+2(x-5)=-x+2
<=> 3x+2x+x=2+10
<=>6x=12
<=>x=2
b) 3x2-2x=0
<=>x(3x-2)=0
<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)
<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)
<=> 8x+2x-8=24-6x
<=>8x+2x+6x=24+8
<=>16x=32
<=>x=2
d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)
<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)
=> (x-2)2-3(x+2)=2(x-11)
<=> x2-4x+4-3x-6=2x-22
<=> x2-4x-3x-2x=-22-4+6
<=> x-9x+20=0
<=> (x-4)(x-5)=0
<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )
d) (x2+1)(x2-4x+4)=0
=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)
=>(x-2)2 =0
=>x=2
5x(x-2000)-(x-2000)=0
(x-2000)(5x-1)=0
\(\left[{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)