K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\) (1)

\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)=16\)

\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2+x-5\right)=16\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2-x+5=16\)

\(\Leftrightarrow18x-2=16\)

\(\Leftrightarrow18x=16+2\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{1\right\}\)

b) \(\left(10x+9\right)\cdot x-\left(5x-1\right)\left(2x+3\right)=8\) (2)

\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)

\(\Leftrightarrow10x^2+9x-\left(10x^2+13x-3\right)=8\)

\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)

\(\Leftrightarrow-4x+3=8\)

\(\Leftrightarrow-4x=8-3\)

\(\Leftrightarrow-4x=5\)

\(\Leftrightarrow x=-\dfrac{5}{4}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{5}{4}\right\}\)

c) \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\) (3)

\(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)

\(\Leftrightarrow42x-41=0\)

\(\Leftrightarrow42x=41\)

\(\Leftrightarrow x=\dfrac{41}{42}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{41}{42}\right\}\)

d) \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) (4)

\(\Leftrightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)

\(\Leftrightarrow x^3+6x^2+x^2+6x-x^3=5x\)

\(\Leftrightarrow7x^2+6x=5x\)

\(\Leftrightarrow7x^2+6x-5x=0\)

\(\Leftrightarrow7x^2+x=0\)

\(\Leftrightarrow x\left(7x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\7x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (4) là \(S=\left\{-\dfrac{1}{7};0\right\}\)

4 tháng 9 2017

a) \(7x^2-28=0\Leftrightarrow7\left(x^2-4\right)=0\Leftrightarrow x^2-4=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) vậy \(x=2;x=-2\)

b) \(\left(2x+1\right)+x\left(2x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\) vậy \(x=-1;x=\dfrac{-1}{2}\)

c) \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)

d) \(9\left(3x-2\right)=x\left(2-3x\right)\Leftrightarrow9\left(3x-2\right)=-x\left(3x-2\right)\)

\(\Leftrightarrow9\left(3x-2\right)+x\left(3x-2\right)=0\Leftrightarrow\left(9+x\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}9+x=0\\3x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\3x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x=-9;x=\dfrac{2}{3}\)

e) \(5x\left(x-3\right)-2x+6=0\Leftrightarrow5x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(5x-2\right)\left(x-3\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-2=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\x=3\end{matrix}\right.\) vậy \(x=\dfrac{2}{5};x=3\)

14 tháng 6 2017

a)\(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)

\(\Leftrightarrow x^2-19x-x^2+4=0\)

\(\Leftrightarrow4-19x=0\Leftrightarrow19x=4\Leftrightarrow x=\dfrac{4}{19}\)

b)\(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)

\(\Leftrightarrow3x^2-15x+2x^2-5x-3=5x^2-5x\)

\(\Leftrightarrow5x^2-20x-3-5x^2+5x=0\)

\(\Leftrightarrow-15x-3=0\)\(\Leftrightarrow-15x=3\Leftrightarrow x=-\dfrac{1}{5}\)

14 tháng 6 2017

a, \(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)

\(\Leftrightarrow x^2-19x=x^2-4\)

\(\Leftrightarrow19x=4\)

\(\Leftrightarrow x=\dfrac{4}{19}\)

Vậy...

b, \(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)

\(\Leftrightarrow3x^2-15x+2x^2-6x+x-3=5x^2-5x\)

\(\Leftrightarrow5x^2-20x-3=5x^2-5x\)

\(\Leftrightarrow-20x-3=-5x\)

\(\Leftrightarrow-15x=3\)

\(\Leftrightarrow x=\dfrac{-1}{5}\)

Vậy...

20 tháng 6 2017

a,

\(4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)

= \(24-4x+2x^2+3x^3-5x^2-4x+3x^2-3x^3\)

\(=24-\left(4x-4x\right)+\left(2x^2-5x^2+3x^2\right)+\left(3x^3-3x^3\right)\)

\(=24\)

vì kết quả không phụ thuộc vào giá trị của biến

=> (đpcm)

Bài 2: 

a: \(x^2-16-\left(x+4\right)=0\)

=>(x+4)(x-4)-(x+4)=0

=>(x+4)(x-5)=0

=>x=5 hoặc x=-4

b: \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)

\(\Leftrightarrow9x^2-6x+1-9x^2+1=0\)

=>-6x+2=0

=>-6x=-2

hay x=1/3

c: \(4x^2+9=-12x^2\)

\(\Leftrightarrow4x^2+12x^2=-9\)

\(\Leftrightarrow16x^2=-9\)(vô lý)

Do đó: \(x\in\varnothing\)

d: \(4x^2-5x+1=0\)

\(\Leftrightarrow4x^2-4x-x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)

=>x=1 hoặc x=1/4

e: \(4x^2-4x+3=0\)

\(\Leftrightarrow4x^2-4x+1+2=0\)

\(\Leftrightarrow\left(2x-1\right)^2=-2\)(vô lý)

Do đó: \(x\in\varnothing\)

11 tháng 9 2017

câu e)

\(4x^2-4x+3=\left(2x-1\right)^2+2=0=>VoN_0\)

11 tháng 9 2017

Bài 1:

a) \(9x^2-6x+2\)

\(\Leftrightarrow9x^2-6x+1+1\)

\(\Leftrightarrow\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x,1>0\)

\(\Rightarrow9x^2-6x+2\) luôn dương với mọi x.

b) \(x^2+x+1\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x,\dfrac{3}{4}>0\)

\(\Rightarrow x^2+x+1\) luôn dương với mọi x.

Bài 2 :

a) \(A=x^2-3x+5\)

\(\Leftrightarrow A=x^2-3x+2+3\)

\(\Leftrightarrow A=\left(x-2\right)\left(x-1\right)+3\)

\(\left(x-2\right)\left(x-1\right)\ge0\forall x\) => \(A\ge3\)

Vậy GTNN A đạt được = 3 khi và chỉ khi x = 2 hoặc x = 1.

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Leftrightarrow B=4x^2-4x+1+x^2+4x+4\)

\(\Leftrightarrow B=5x^2+5\)

\(\Leftrightarrow B=5\cdot\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

=> GTNN của B đạt được = 5 khi và chỉ khi x = 0.

Bài 3 :

a) \(A=-x^2+2x+4\)

Làm tương tự ta có \(A_{MAX}=5\) khi và chỉ khi x = 1.

b) \(B=-x^2+4x\)

Làm tương tự ta có \(B_{MAX}=4\) khi và chỉ khi x = 2.

5 tháng 7 2017

\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)

\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)

\(A=-12x\)

\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)

\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)

\(B=-3x-12\)

Câu C tương tự.

Chúc bạn học tốt!!!

5 tháng 7 2017

A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)

A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)

A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)

A = \(-4x^2-12x-8+4x^2+8=-12x\)

b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)

B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)

B = \(-6x^2-3x-6\)