K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 9 2020

\(sin9x-\sqrt{3}cos9x=sin7x-\sqrt{3}cos7x\)

\(\Leftrightarrow\frac{1}{2}sin9x-\frac{\sqrt{3}}{2}cos9x=\frac{1}{2}sin7x-\frac{\sqrt{3}}{2}cos7x\)

\(\Leftrightarrow sin\left(9x-\frac{\pi}{3}\right)=sin\left(7x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\frac{\pi}{3}=7x-\frac{\pi}{3}+k2\pi\\9x-\frac{\pi}{3}=\frac{4\pi}{3}-7x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{48}+\frac{k\pi}{8}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm âm lớn nhất \(x=-\frac{\pi}{48}\)

NV
21 tháng 9 2020

\(A=\frac{cos3x+cos9x+cos5x+cos7x}{sin3x+sin9x+sin5x+sin7x}=\frac{2cos6x.cos3x+2cos6x.cosx}{2sin6x.cos3x+2sin6x.cosx}\)

\(=\frac{2cos6x\left(cos3x+cosx\right)}{2sin6x\left(cos3x+cosx\right)}=tan6x\)

\(A=1\Rightarrow tan6x=1\Rightarrow x=\frac{\pi}{24}+\frac{k\pi}{6}\)

23 tháng 9 2020

bằng cot6x chứ bạn???

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

NV
15 tháng 8 2020

4.

ĐKXĐ: \(2cos^2x+sinx-1\ne0\)

\(\Leftrightarrow-2sin^2x+sinx+1\ne0\Rightarrow\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)

Khi đó pt tương đương:

\(\Leftrightarrow\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(loại\right)\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
15 tháng 8 2020

3.

\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)

\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)

NV
19 tháng 10 2020

Câu 1:

\(cos^2\) gì nhỉ?

Câu 2: đề không hợp lý \(\sqrt{3}sin9x\)\(\sqrt{3}cos9x\) có lý hơn

\(\Leftrightarrow3sin3x-4sin^33x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow sin9x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow sin9x=\frac{1}{\sqrt{3}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+\frac{k2\pi}{9}\\x=\frac{\pi}{9}-\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+\frac{k2\pi}{9}\end{matrix}\right.\)

Nghiệm nhìn rất ngớ ngẩn nếu đề đúng

3.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\2x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
29 tháng 9 2020

\(3sin3x-4sin^33x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow sin9x+\sqrt{3}sin9x=1\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sin9x=1\)

\(\Leftrightarrow sin9x=\frac{1}{\sqrt{3}+1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+k2\pi\\x=\pi-\frac{1}{9}arcsin\left(\frac{1}{\sqrt{3}+1}\right)+k2\pi\end{matrix}\right.\)