\(\overrightarrow{GA}=\overrightarrow{a},\overrightarrow{GB}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Câu 1.

I là trung điểm của AM \(\Rightarrow\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AM}\)

M là trung điểm của BC \(\Rightarrow\) \(\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{AI}=\frac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Câu 2.

Ta có: \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\Leftrightarrow2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MA}-\overrightarrow{MC}\)

\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

\(\Rightarrow\) M là trọng tâm của tam giác ABC.

\(\Rightarrow\) D đúng.

8 tháng 8 2019

Câu 1:

Theo quy tắc TĐ ta có:

\(\overrightarrow{AM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\overrightarrow{AI}=\frac{\overrightarrow{AM}}{2}\Rightarrow\overrightarrow{AI}=\frac{\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{4}\)

Câu 2:

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{CA}\Rightarrow\overrightarrow{MC}+\overrightarrow{MB}+\overrightarrow{MA}=0\)

Vậy M là trọng tâm tam giác ABC (D)

Câu 3 sai đề, phải là \(\overrightarrow{BC}=m.\overrightarrow{a}+n.\overrightarrow{b}\) ms đúng chứ?

Câu 4 để mai ik, dài lắm :))

20 tháng 11 2022

Chọn B

Câu 2: 

Vì G là trọng tâm nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

hay \(\overrightarrow{GC}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)

=>m=-1; n=-2

30 tháng 3 2017

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C

NV
4 tháng 10 2020

Mệnh đề C sai

\(\overrightarrow{GA}+\overrightarrow{GB}=-\overrightarrow{GC}\)

Mà hai vecto \(\overrightarrow{GC}\)\(\overrightarrow{AM}\) ko cùng phương nên đẳng thức \(\overrightarrow{GA}+\overrightarrow{GB}=\frac{3}{2}\overrightarrow{AM}\) ko thể xảy ra

NV
20 tháng 8 2020

Theo tính chất trọng tâm ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GC}=-\overrightarrow{GA}-\overrightarrow{GB}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\Rightarrow m=n=-1\Rightarrow m+n=-2\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

$G$ là trọng tâm tam giác $ABC$ thì ta có 1 bổ đề quen thuộc là:

$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

$\Leftrightarrow \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{GC}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{GC}=-(\overrightarrow{a}+\overrightarrow{b})$

Ta có:

\(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}=\frac{1}{2}(\overrightarrow{AG}+\overrightarrow{GB})-(\overrightarrow{BG}+\overrightarrow{GC})\)

\(=\frac{1}{2}(-\overrightarrow{a}+\overrightarrow{b})-[-\overrightarrow{b}-(\overrightarrow{a}+\overrightarrow{b})]\)

\(=\frac{\overrightarrow{a}}{2}+\frac{5\overrightarrow{b}}{2}\)

8 tháng 11 2018

1. C

2. C

3. Sửa đề:

\(\overrightarrow{BD}+\overrightarrow{FE}=\overrightarrow{FD}+\overrightarrow{BE}\Leftrightarrow\overrightarrow{BD}-\overrightarrow{BE}=\overrightarrow{FD}-\overrightarrow{FE}\Leftrightarrow\overrightarrow{ED}=\overrightarrow{ED}\) (luôn đúng)