K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2020

Theo tính chất trọng tâm ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GC}=-\overrightarrow{GA}-\overrightarrow{GB}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\Rightarrow m=n=-1\Rightarrow m+n=-2\)

30 tháng 11 2022

\(\overrightarrow{AB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{b}-\overrightarrow{a}\)

\(\overrightarrow{GC}=0-\overrightarrow{GA}-\overrightarrow{GB}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)

\(\overrightarrow{CA}=\overrightarrow{CG}+\overrightarrow{GA}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{a}=2\overrightarrow{a}+\overrightarrow{b}\)

20 tháng 11 2022

Chọn B

30 tháng 3 2017

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

$G$ là trọng tâm tam giác $ABC$ thì ta có 1 bổ đề quen thuộc là:

$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

$\Leftrightarrow \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{GC}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{GC}=-(\overrightarrow{a}+\overrightarrow{b})$

Ta có:

\(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}=\frac{1}{2}(\overrightarrow{AG}+\overrightarrow{GB})-(\overrightarrow{BG}+\overrightarrow{GC})\)

\(=\frac{1}{2}(-\overrightarrow{a}+\overrightarrow{b})-[-\overrightarrow{b}-(\overrightarrow{a}+\overrightarrow{b})]\)

\(=\frac{\overrightarrow{a}}{2}+\frac{5\overrightarrow{b}}{2}\)

14 tháng 8 2019

B

Câu 2: 

Vì G là trọng tâm nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

hay \(\overrightarrow{GC}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)

=>m=-1; n=-2

NV
21 tháng 8 2020

\(\overrightarrow{AG}=\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\Rightarrow\overrightarrow{GA}=-\frac{1}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AC}=-\frac{1}{3}\overrightarrow{a}-\frac{1}{3}\overrightarrow{b}\)

\(\Rightarrow m=n=-\frac{1}{3}\Rightarrow mn=\frac{1}{9}\)

AH
Akai Haruma
Giáo viên
24 tháng 9 2017

Lời giải:

a) Gọi giao của hai đường chéo là $I$ thì $I$ là trung điểm của $AD$ và $BC$

Do đó, \(A,G,I,D\) thẳng hàng. Áp dụng tính chất của đường trung tuyến:

\(\bullet \overrightarrow{GA}=\frac{-1}{3}\overrightarrow{AD}\)

\(\bullet \overrightarrow{GB}=\overrightarrow{GA}+\overrightarrow{AB}\)

\(\bullet \overrightarrow{GD}=\frac{2}{3}\overrightarrow{AD}\)

\(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=2\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{GD}=\frac{-2}{3}\overrightarrow{AD}+\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}\)

\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=\overrightarrow{AB}\)

b) Áp dụng công thức phần a:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}=\overrightarrow{AD}\)

\(\Leftrightarrow \overrightarrow{AB}-\overrightarrow{GD}+\overrightarrow{GM}=\overrightarrow{AD}\)

\(\Leftrightarrow \overrightarrow{GM}-\overrightarrow{GD}=\overrightarrow{AD}-\overrightarrow{AB}\)

\(\Leftrightarrow \overrightarrow{DM}=\overrightarrow{BD}\)

Do đó $M$ là điểm nằm trên đường thằng $BD$ sao cho $D$ là trung điểm của $BM$

26 tháng 9 2017

* câu a hình như sai rồi đó bn

* câu b mk đọc o hiểu j hết