Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\sqrt{2x+3}=1\)
\(2x+3=1\)
\(2x=1-3\)
\(2x=-2\)
\(x=-\frac{2}{2}\)
\(x=-1\)
b.
\(\left(3x-1\right)^2-25=0\)
\(\left(3x-1\right)^2=25\)
\(\left(3x-1\right)^2=\left(\pm5\right)^2\)
\(3x-1=\pm5\)
TH1:
\(3x-1=5\)
\(3x=5+1\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
TH2:
\(3x-1=-5\)
\(3x=-5+1\)
\(3x=-4\)
\(x=-\frac{4}{3}\)
Vậy \(x=2\) hoặc \(x=-\frac{4}{3}\)
c.
\(\left(2x+4\right)\left(x^2+1\right)\left(x-2\right)=0\)
TH1:
\(2x+4=0\)
\(2x=-4\)
\(x=-\frac{4}{2}\)
\(x=-2\)
TH2:
\(x^2+1=0\)
\(x^2=-1\)
mà \(x^2\ge0\) với mọi x
=> loại
TH3:
\(x-2=0\)
\(x=2\)
Vậy \(x=2\) hoặc \(x=-2\)
\(a.\)\(=>2x+3=1\)\(=>2x=-2\)\(=>x=-1\)
\(b.\)\(=>\left(3x-1\right)^2=25\)\(=>\left(3x-1\right)^2=5^2=>3x-1=5=>3x=6=>x=2\)
\(c.\)\(=>2x+4=0\)hoac \(x^2+1=0\)hoac \(x-2=0\)
=> * 2x=4 => x= 2
* x^2=-1=> x=-1
* x = 2
\(=>x\in\left(2;-1\right)\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)
a) Vì x< 0 nên x= \(-\sqrt{7}\)
b) x-2 =\(\sqrt{2}\)hoặc x-2 = -\(\sqrt{2}\)
suy ra x= \(\sqrt{2}\)+2 hoặc x= \(-\sqrt{2}\)+2
c)
x+\(\sqrt{3}\) =\(\sqrt{5}\)hoặc x+\(\sqrt{3}\) = -\(\sqrt{5}\)
suy ra x= \(\sqrt{5}-\sqrt{3}\)hoặc x= \(-\sqrt{5}-\sqrt{3}\)
Các bạn tự kết luận nhé
\(a)\)\(\left(x+1\right)\left(x-2\right)< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2}\)
Vậy \(-1< x< 2\)
\(b)\)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
TH1 : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Leftrightarrow x>2}\)
TH2 : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Leftrightarrow x< \frac{-2}{3}}\)
Vậy \(x>2\) hoặc \(x< \frac{-2}{3}\)
Chúc bạn học tốt ~
a) Ta có: x(x-1)<0
\(\Leftrightarrow\)x; x-1 khác dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}x>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 1\end{matrix}\right.\Leftrightarrow0< x< 1\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy: 0<x<1
b) Ta có: (2-x)(3x-12)>0
\(\Leftrightarrow\)2-x; 3x-12 cùng dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}2-x>0\\3x-12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\3x>12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>4\end{matrix}\right.\Leftrightarrow x>4\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}2-x< 0\\3x-12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\3x< 12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< 4\end{matrix}\right.\Leftrightarrow x< 2\)
Vậy: 2<x<4
c) Ta có: \(\left(x+1\right)^2\cdot\left(5-2x\right)\le0\)
*Trường hợp 1:
\(\left(x+1\right)^2\cdot\left(5-2x\right)< 0\)
\(\Leftrightarrow\)(x+1)2; 5-2x khác dấu
-Trường hợp 1:
\(\left\{{}\begin{matrix}\left(x+1\right)^2< 0\\5-2x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\2x< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< \frac{5}{2}\end{matrix}\right.\Leftrightarrow x< 1\)
-Trường hợp 2:
\(\left\{{}\begin{matrix}\left(x+1\right)^2>0\\5-2x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1>0\\2x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>\frac{5}{2}\end{matrix}\right.\Leftrightarrow x>\frac{5}{2}\)
Vậy: \(1< x< \frac{5}{2}\)
câu d tương tự nhé bạn
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a) 3x-1(1+5)=162
3x-1.6=162
3x-1=162:6=27=33
=>x-1=3
x=4
b) x(x+3)=0
=>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
c) Vì tích nhỏ hơn 0 nên có 1 thừa số dương và 1 thừa số âm
Có x-1>x-3
=>x-1>0 và x-3<0
=>x>1 và x<3
Vậy x=2
a) 3x-1 + 5. 3x-1 = 162
1. 3x-1 + 5. 3x-1 = 162
( 1 + 5 ) . 3x-1 = 162
6. 3x-1 = 162
3x-1 = 162 : 6
3x-1 = 27
3x-1 = 33
x - 1 =3
x = 3 + 1
x = 4