Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O
=> O là trung điểm của AC và BD (t/c của hình bình hành)
=> OB=OD. Mà BE=DF(gt)
=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F
=> O là trung điểm của EF
Xét tứ giác AECF có: AC cắt EF tại O
Mà O là trung điểm của AC( c/m trên )
O là trung điểm của EF( c/m trên )
=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)
b) Để AECF là hình thoi => \(AC\perp EF\) tại O
=> \(AC\perp BD\) tại O \(\left(E,F\in\left(O\right)\right)\)
Xét hình bình hành ABCD có: \(AC\perp BD\) tại O (c/m trên)
=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)
Vậy để AECF là hình thoi thì ABCD là hình thoi
a) Vì ABCD là hình thoi(gt). Mà AC và BD cắt nhau tại O
=> O là trung điểm của AC và BD (t/c của hình bình hành)
=> OB=OD. Mà BE=DF(gt)
=> OB-BE=OD-DF => OE=OF. Mà O nằm giữa E và F
=> O là trung điểm của EF
Xét tứ giác AECF có: AC cắt EF tại O
Mà O là trung điểm của AC( c/m trên )
O là trung điểm của EF( c/m trên )
=> AECF là hình bình hành (Tứ giác có 2 đ/c cắt nhau tại trung điểm của mỗi đg là hình bình hành)
b) Để AECF là hình thoi => AC⊥EFAC⊥EF tại O
=> AC⊥BD tại O (E,F∈(O)
Xét hình bình hành ABCD có: AC⊥BDAC⊥BD tại O (c/m trên)
=> ABCD là hình thoi (Hình bình hành có 2 đ/c vuông góc là hình thoi)
Vậy để AECF là hình thoi thì ABCD là hình thoi
1) \(DN=\dfrac{1}{2}DC=\dfrac{1}{2}BC=CM\)
△ADN và △DCM có: \(\widehat{ADN}=\widehat{DCM}=90^0;AD=DC;DN=CM\)
\(\Rightarrow\)△ADN=△DCM (c-g-c).
\(\Rightarrow\widehat{AND}=\widehat{DMC}\)
\(\widehat{DEN}=180^0-\widehat{MDC}-\widehat{AND}=180^0-\widehat{MDC}-\widehat{DMC}=180^0-90^0=90^0\)
\(\Rightarrow\)AN⊥DM tại E.
△DEN và △DCM có: \(\widehat{DEN}=\widehat{DCM}=90^0;\widehat{MDC}\) là góc chung.
\(\Rightarrow\)△DEN∼△DCM (g-g) \(\Rightarrow\dfrac{DE}{DC}=\dfrac{DN}{DM}\Rightarrow DC.DN=DE.DM\).
△DCB vuông cân tại C \(\Rightarrow DC=CB=BD\sqrt{2}\).
\(DC.DN=BD\sqrt{2}.\dfrac{BD\sqrt{2}}{2}=\dfrac{BD^2.2}{2}=BD^2\)
\(\Rightarrow DB^2=DE.DM\)
2) F là trung điểm AD, BF cắt AN tại G.
Tứ giác DFBM có: DF//BM, \(DF=BM=\dfrac{1}{2}AD=\dfrac{1}{2}BC\)
\(\Rightarrow\)DFBM là hình bình hành \(\Rightarrow\)DM//BF mà AN⊥DM.
\(\Rightarrow\)BF⊥AN tại G.
△AED có: FG//DE, F là trung điểm AD.
\(\Rightarrow\)G là trung điểm AE.
△ABE có: BG vừa là đường cao vừa là trung tuyến.
\(\Rightarrow\)△ABE cân tại B\(\Rightarrow AB=BE=CB\Rightarrow\)△BCE cân tại B.
Hạ BH⊥CE (H thuộc CE) \(\Rightarrow\)BH là phân giác \(\widehat{CBE}\).
\(\widehat{EBC}=2\widehat{HBC}=2\left(90^0-\widehat{ECB}\right)=2\widehat{ECD}\)
a, ta có N,O lần lượt là trung điểm của AD,AC=> NO//DC mà DC\(\perp\)AD nên \(\widehat{ADO}\)=\(90^o\)
Tương tự ta được \(\widehat{AEO}=90^o\)
Xét tứ giác AEON có:\(\widehat{NAE}=\widehat{ANO}=\widehat{AEO}=90^o\)=>AEON là hình chữ nhật=>AI=AO,BI=ÌF
Vì N,O lần lượt là trung điểm của AD,DB nên NO//AB=>\(\widehat{BAI}=\widehat{IOF}\)
Xét \(\Delta BAI\)và \(\Delta FOI\)có:\(\widehat{BAI}=\widehat{IOF}\),AI=AO,\(\widehat{AIB}=\widehat{FIO}\)
=>\(\Delta BAI=\Delta FOI\)=>AB=FO
Xét tứa giác ABOF có AB//=FO=> ABOF là hình bình hành=>AF=BO mà BO=AO=>AF=AO=OD
Vì I,O lần lượt là trung điểm của BF và BD nên IO=1/2FD=1/2AO=>FD=AO
Xét tứ giác OAFD có:
AF=AO=OD=FD=>OAFD là hình thoi
bạn ơi đầu bài có nhầm lẫn j ko làm sao bình phương của OD có thể bằng tích của DI với DM được
Mình làm ra mà bạn đặng thùy linh