Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
(x^2)^2+(x^2+6x+3^2)-1=0
(x^2)^2-1^2+(x+3)^2=0
(x^2-1)(x^2+1)+(x+3)^2=0
(x+3)^2 luôn lớn hơn 0
nên x^2-1=0 => x=1
x^2+1=0 => x vô nghiệm
1) \(x^4-2x^2-144x+1295=0\)
\(\Rightarrow\)Cậu xem lại đề thử xem nhé !
2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)
\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)
\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)
\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\)\(x+3=0\)
hoặc \(x-2=0\)
hoặc \(x^2+x+4=0\)
\(\Leftrightarrow\)\(x=-3\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
3) \(x^4-2x^3+4x^2-3x-10=0\)
\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)
\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-2=0\)
hoặc \(x^2-x+5=0\)
\(\Leftrightarrow x=-1\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)
(x^3-9x^2+27x-27)+(x^2-6x+9)=0
(x-3)^3+(x-3)^2=0
(x-3)^2(x-2)=0
<=>x-3=0 hoặc x-2=0
<=>x=3 hoặc x=2
x=-2 và 1
x = 1 và x = -2 nha bạn