Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) (2x-4)(x2-16)=0
\(\Rightarrow\orbr{\begin{cases}2x-4=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm4\end{cases}}}\)
Vậy..
b) (x+5)2-25=0
\(\left(x+5\right)^2=25\)
\(\left(x+5\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x+5=5\\x+5=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}}\)
Vậy..
c) x2-6x+9=0
\(x.\left(1-6\right)=-9\)
\(x.\left(-5\right)=-9\)
\(x=\frac{9}{5}\)
chúc bạn học tốt !!!!
a) \(-x^2+3x+4>0\)
\(\Leftrightarrow-\left(x^2-3x-4\right)>0\)
\(\Leftrightarrow x^2-3x-4< 0\)
\(\Leftrightarrow x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}-\frac{5}{2}\right)\left(x-\frac{3}{2}+\frac{5}{2}\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
\(\Leftrightarrow1< x< 4\)
b) \(x^2-6x+5\ge0\)
\(\Leftrightarrow x^2-2.3x+9-4\ge0\)
\(\Leftrightarrow\left(x-3\right)^2-4\ge0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+3\right)\ge0\)
\(\Leftrightarrow x\left(x-5\right)\ge0\)
Còn lại tự làm
a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)
TH1:=>x-2=0
=>x=2
TH2:x+3=0
=>x=-3
dựa vô bệt thức ta thấy
D<0=> phương trình ko có nghiệm thực
=>x=-3 hoặc 2
nhớ tick nhé
\(x^4+\left(x+1\right)\left(5x^2-6x-6\right)=0\)
\(\Leftrightarrow x^4+5x^3-x^2-12x-6=0\)
\(\Leftrightarrow x^4-x^3+6x^3-x^2-6x^2+6x^2\)
\(-6x-6x-6=0\)
\(\Leftrightarrow\left(x^4-x^3-x^2\right)+\left(6x^3-6x^2-6x\right)+\)
\(\left(6x^2-6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x^2-x-1\right)+6x\left(x^2-x-1\right)+\)
\(6\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x^2+6x+6\right)\left(x^2-x-1\right)=0\)
\(TH1:x^2+6x+6=0\)
Ta có: \(\Delta=6^2-4.6=12\sqrt{\Delta}=\sqrt{12}\)
pt có 2 nghiệm:
\(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\)
\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\)
\(TH2:x^2-x-1=0\)
Ta có: \(\Delta=1^2+4.1=5,\sqrt{\Delta}=\sqrt{5}\)
pt có 2 nghiệm:
\(x_1=\frac{1+\sqrt{5}}{2}\)và \(x_2=\frac{1-\sqrt{5}}{2}\)
Vậy pt có 4 nghiệm \(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\);\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\);
\(x_3=\frac{1+\sqrt{5}}{2}\);\(x_4=\frac{1-\sqrt{5}}{2}\)
Làm tốt rồi nhưng mà lớp 8 chưa học cách giải pt bậc 2 \(\Delta\). Thì chúng ta có thể:
VD TH1: \(x^2+6x+6=0\)
<=> \(x^2+6x+9-9+6=0\)
<=> \(\left(x+3\right)^2=3\)
<=> \(\orbr{\begin{cases}x+3=\sqrt{3}\\x+3=-\sqrt{3}\end{cases}}\)<=> \(\orbr{\begin{cases}x=-3+\sqrt{3}\\x=-3-\sqrt{3}\end{cases}}\)
tương tự Th2.
(x^3-9x^2+27x-27)+(x^2-6x+9)=0
(x-3)^3+(x-3)^2=0
(x-3)^2(x-2)=0
<=>x-3=0 hoặc x-2=0
<=>x=3 hoặc x=2
(x^2)^2+(x^2+6x+3^2)-1=0
(x^2)^2-1^2+(x+3)^2=0
(x^2-1)(x^2+1)+(x+3)^2=0
(x+3)^2 luôn lớn hơn 0
nên x^2-1=0 => x=1
x^2+1=0 => x vô nghiệm