Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H A B O x y
Gọi \(A\left(x;y\right)\). Do \(A,B\in\left(E\right)\) có hoành độ dương và tam giác \(OAB\) cân tại \(O\), nên:
\(B\left(x;y\right),x>0.=>AB=2\left|y\right|=\sqrt{4-x^2}\)
Gọi \(H\) là trung điểm \(AB,\) ta có: \(OH\pm AB\) và \(OH=x\).
Diện tích: \(S_{OAB}=\frac{1}{2}x\sqrt{4-x^2}\)
\(=\frac{1}{2}\sqrt{x^2\left(4-x^2\right)\le1}\)
Dấu " = " xảy ra, khi và chỉ khi \(x=\sqrt{2}\)
Vậy: \(A\left(\sqrt{2};\frac{\sqrt{2}}{2}\right)\) và \(B\left(\sqrt{2};-\frac{\sqrt{2}}{2}\right)\) hoặc \(A\left(\sqrt{2};-\frac{\sqrt{2}}{2}\right)\) và \(B\left(\sqrt{2};\frac{\sqrt{2}}{2}\right)\).
O 2 2 A y x
Phương trình chính tắc của \(\left(E\right)\) có dạng: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), với \(a>b>0\) và \(2a=8=>a=4\).
Do \(\left(E\right)\) và \(\left(C\right)\) cùng nhận \(Ox\) và \(Oy\) làm trục đối xứng và các giao điểm là các đỉnh của một hình vuông nên \(\left(E\right)\) và \(\left(C\right)\) có một giao điểm với tọa độ dạng \(A\left(t;t\right),t>0\)
\(A\in\left(C\right)\Leftrightarrow t^2+t^2=8=>t=2\)
\(A\left(2;2\right)\in\left(E\right)\Leftrightarrow\frac{4}{16}+\frac{4}{b^2}=1\Leftrightarrow b^2=\frac{16}{3}\)
Phương trình chính tắc của \(\left(E\right)\) là \(\frac{x^2}{16}+\frac{y^2}{\frac{16}{3}}=1\)
\(a.=x\)
\(b.=y^3\)
\(c.=3xy\)
\(d.=-\frac{5}{2}a\)
\(e.=3yz\)
\(f.=-3xy\)
a: \(A=\dfrac{6}{x-3}+\dfrac{2x^2}{x^2-1}+\dfrac{6-2x}{\left(x-3\right)\left(x^2-1\right)}\)
\(=\dfrac{6x^2-6+2x^3-6x^2+6-2x}{\left(x-3\right)\left(x^2-1\right)}\)
\(=\dfrac{2x^3-2x}{\left(x-3\right)\left(x^2-1\right)}=\dfrac{2x}{x-3}\)
b: Để A nguyên thì \(x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{4;2;5;6;0;9;-3\right\}\)
c: Thay x=2 vào A, ta được:
\(A=\dfrac{2\cdot2}{2-3}=-4\)
Thay x=-2 vào A, ta được:
\(A=\dfrac{-2\cdot2}{-2-3}=\dfrac{-4}{-5}=\dfrac{4}{5}\)
Bài 1:
Đáp số: 12 kệ thuốc, 10 thùng thuốc
Vì khi cho 2 thùng lên 1 kệ thì thừa 7 kệ(gt)
=> Số kệ >7
Theo công thức: số kệ = thùng : 2+ 7
Vì khi 1 thùng để lên 2 kệ thì thừa 4 thùng (gt)
=> Số thùng >4
Theo công thức: số thùng= thùng : 2 + 4
Từ đó, ta có thể suy ra được đáp số bằng cách rút gọn các số và cách giải cụ thể (hãy hỏi cô giáo)
\(=\dfrac{2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2-x-5}{x^2-x+1}\)
\(=2x^2+3x-2+\dfrac{-x-5}{x^2-x+1}\)
Vậy: Đa thức dư là -x-5