Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Vì Om là tia phân giác của AOB nên mOB = 1/2 AOB
* Vì On vuông góc với Om nên mOn = 90
* Vì ON nằm giữa OB và OC nên BOn+nOC=BOC
* Vì AOB và BOC là hai góc kề bù nên AOB + BOC = 180
Ta có: mOn = mOB + BOn
90 = 1/2 AOB + BOn
1/2 180 = 1/2 AOB + BOn
Vậy BOn = 1/2 BOC
Vậy BOn là tia phân giác của BOc
A O B B M N a D
Chú ý: Kí hiệu * là độ
-Vì OM là tia phân giác của góc AOB nên
góc AOM = góc MOB = \(\frac{gócAOB}{2}\) (1)
-Vì ON là tia phân giá của góc BOC nên
góc BON = góc NOC = \(\frac{gócBOC}{2}\) (2)
-Ta có góc AOB + góc BOC = 180* (vì kề bù)
Do đó: \(\frac{gócAOB}{2}+\frac{gócBOC}{2}=\frac{180}{2}\)= 90* (3)
Từ (1), (2) và (3) suy ra góc MON = 90* (hay ON vuông góc với OM)
-Vì đường thẳng a đi qua D và vuông góc với OM nên góc D = 90*
-Ta có góc MON = góc D (=90*) mà chúng đang ở vị trí đồng vị
Suy ra a // ON
Ta có hình vẽ:
A B C y x 70 40
Vì Ay là tia đối của AB => góc BAy = 180o
Ta có: BAC + CAy = 180o (kề bù)
=> 40o + CAy = 180o
=> CAy = 180o - 40o
=> CAy = 140o
Do Ax là tia phân giác của CAy => \(CAx=xAy=\frac{CAy}{2}=\frac{140^o}{2}=70^o\)
Ta có: xAy = CBy = 70o
Mà xAy và CBy là 2 góc đồng vị
=> Ax // BC (đpcm)
Giải:
Hình vẽ thì bạn biết rồi nên thôi nhé.
Ta có:
\(\widehat{B}+\widehat{A}+\widehat{C}=180^o\)
hay \(70^o+40^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=70^o\)
\(\Rightarrow\widehat{yAC}=\widehat{B}+\widehat{C}=70^o+70^o=140^o\)
Vì \(\widehat{xAC}\) là tia phân giác của \(\widehat{yAC}\) nên
\(\widehat{xAC}=\frac{1}{2}\widehat{yAC}=\frac{1}{2}.140^o=70^o\)
Ta thấy \(\widehat{xAC}=\widehat{C}=70^o\) mà 2 góc này lại ở vị trí so le trong nên suy ra Ax // BC
\(\Rightarrowđpcm\)
Giải:
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
=(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF
Có hình ko bn
A O B C m n