Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
c: Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)
\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)
\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)
Để phép chia trên là phép chia hết thì a+12=0
hay a=-12
Đặt \(f\left(x\right)=x^3-2x^2-6x+a\)
Gọi thương của \(f\left(x\right):\left(x-2\right)\)là \(P\left(x\right)\)
\(\Rightarrow f\left(x\right)=P\left(x\right).\left(x-2\right)\)
Thay \(x=2\)ta có:
\(8-8-12+a=0\)
\(\Rightarrow a=12\)
Vậy \(a=2\)là giá trị cần tìm
c. Câu hỏi của Toàn Lê - Toán lớp 8 - Học toán với OnlineMath
ta có
6x^3-x^2-23x+a
=6x^3+9x^2-10x^2-15x-8x+a
=3x^2(2x+3)-5x(2x+3)-8X+a
=(2x+3)(3x^2-5x)-8x+a
để biểu thức chia hết cho 2x+3 thì 8x+a chia hết cho 2x+3
nên a=12
Để \(2x^3-4x^2+6x+a⋮x+2\)
\(\Leftrightarrow2x^3-4x^2+6x+a=\left(x+2\right)\cdot a\left(x\right)\)
Thay \(x=-2\)
\(\Leftrightarrow2\left(-2\right)^3-4\left(-2\right)^2+6\left(-2\right)+a=0\\ \Leftrightarrow-16-16-12+a=0\\ \Leftrightarrow-44+a=0\Leftrightarrow a=44\)
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
Lời giải:
Theo định lý Bê-du về phép chia đa thức, để $f(x)=6x^3-x^2-23x+a$ chia hết cho $2x+3$ thì:
$f(\frac{-3}{2})=0$
$\Leftrightarrow 12+a=0$
$\Leftrightarrow a=-12$
Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)
\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)
\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)
Để phép chia này là phép chia hết thì a+12=0
hay a=-12