K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: 

c: Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)

\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)

\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)

Để phép chia trên là phép chia hết thì a+12=0

hay a=-12

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:
Theo định lý Bê-du về phép chia đa thức, để $f(x)=6x^3-x^2-23x+a$ chia hết cho $2x+3$ thì:

$f(\frac{-3}{2})=0$

$\Leftrightarrow 12+a=0$

$\Leftrightarrow a=-12$

Ta có: \(\dfrac{6x^3-x^2-23x+a}{2x+3}\)

\(=\dfrac{6x^3+9x^2-10x^2-15x-8x-12+a+12}{2x+3}\)

\(=3x^2-5x-4+\dfrac{a+12}{2x+3}\)

Để phép chia này là phép chia hết thì a+12=0

hay a=-12

26 tháng 11 2018

b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)

=> đa thức dư trong phép chia là 2x+1

\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)

\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)

\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)

=> đa thức dư trong phép chia là 9

p/s: t mới lớp 7_sai sót mong bỏ qua :>

26 tháng 10 2018

Thiên Hương đẹp quá đi mất?

28 tháng 10 2018

 Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap

15 tháng 10 2022

 

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0

=>m=-5 hoặc m=4/17

22 tháng 10 2015

1-4x-2x^2=3-2(x^2+2x+1)=3-(x+1)^2 nhỏ hơn hoặc bằng 3. max(....)=3 khi x=-1

5 tháng 11 2017

giúp mk với

2 tháng 12 2017

a) x: x n = x3 - n

b) xn : x5 = xn - 5

5 tháng 11 2019

c. Câu hỏi của Toàn Lê - Toán lớp 8 - Học toán với OnlineMath

22 tháng 10 2016

a) \(g\left(x\right)=x+1=x-\left(-1\right)\)

Áp dụng định lý Bê-du có số dư của \(f\left(x\right)\)cho \(g\left(x\right)\)là :

\(f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+....+\left(-1\right)^{100}\)

\(=1+1+1+...+1\)

\(\frac{100-0}{2}+1=51\)số \(1\))

\(=51\)

Vậy ...

22 tháng 10 2016

còn câu b,c giúp mk nốt nha